用html代码制作一个歌单,歌单.html · 李岢恩/MusicClub - Gitee.com



歌单

$axure.utils.getTransparentGifPath = function() { return 'resources/images/transparent.gif'; };

$axure.utils.getOtherPath = function() { return 'resources/Other.html'; };

$axure.utils.getReloadPath = function() { return 'resources/reload.html'; };

MUX

12:45 PM

歌单推荐

u241.png

u243.png

u245.png

u247.png

睡前

国语

轻音乐

推荐

u223.png

u225.svg

u196.svg

1. 点击顶部的返回图标,返回到首页页面

2.点击:

推荐:点击推荐切换到推荐界面

睡前:点击睡前切换到睡前界面

国语:点击国语切换到国语界面

轻音乐:点击轻音乐切换到轻音乐界面

3.滑动:点击页面左右滑动,页面可切换

(举例)当初在“睡前”界面时,点击屏幕向左滑动,可切换到“推荐”界面,点击屏幕向右滑动,可切换到“轻音乐”界面。

一键复制

编辑

Web IDE

原始数据

按行查看

历史

### 潜在类别分析简介 潜在类别分析(Latent Class Analysis, LCA)是一种用于识别未观察到的子群体的技术,这些子群体由观测变量中的模式定义。LCA属于混合模型的一种,在心理学和社会科学领域广泛应用。 ### Python实现潜在类别分析的例子 对于想要执行潜在类别分析的研究者来说,`pyLCA`库是一个不错的选择。下面提供了一个简单的例子来展示如何利用Python进行潜在类别分析: #### 安装必要的包 首先需要确保已经安装了所需的软件包。可以通过pip命令轻松完成此操作: ```bash pip install pylca ``` #### 数据准备 假设有一个关于学生课外活动参与情况的数据集,其中包含了三个二元响应变量:是否参加体育运动、音乐社团和志愿者服务。这构建一个虚拟的小型数据框来进行说明。 #### 实施潜在类别分析 下面是完整的代码片段,展示了创建模拟数据并对其进行潜在类别分析的过程: ```python import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from pyLCA.lca import LatentClassAnalysis # 创建示例数据帧 np.random.seed(123) data = { 'Sports': np.random.binomial(n=1, p=.6, size=(500)), 'MusicClub': np.random.binomial(n=1, p=.4, size=(500)), 'VolunteerService': np.random.binomial(n=1, p=.7, size=(500)) } df = pd.DataFrame(data) # 对分类特征编码 (如果存在字符串类型的标签则必需这样做),本例中已经是数值所以可以跳过这一步骤 le = LabelEncoder() for col in df.columns: df[col] = le.fit_transform(df[col]) # 执行潜在类别分析 lca_model = LatentClassAnalysis(num_classes=3).fit(df.values) # 输出结果摘要 print(lca_model.summary()) ``` 上述代码实现了基于给定数据的一个三类别的潜在类别分析,并打印出了模型的结果概述[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值