箱式图 分组_【1043.】这两个是啥图?区别和联系

缘起

    在这个即看才华又看颜值的年代,科研亦是如此,不仅会做,还要会对自己的科研结果进行表达。表达二法,图表是也!其中就有“一图胜前言”之说。

    科研图包括三种:统计图、模式图和实验图。在统计图中,SCI论文比例最高的为柱状图和折线图。

   本期给大家2张图,大家辨识一下:

   问题1:2张图各自是什么图?

   问题2:分别在什么时候用?

fe53f88effceea8cbcf23e6510006a92.png

图1箱式散点图

0049595e17e6f83b54032f5a94aec9aa.png

图2柱状散点图

图1解释

图1这种图形近几年在SCI论文中较为常见,叫做箱式散点图(box+sactter),也就是在箱式图的基础上,加上了原始数据的散点图而已。为啥要这样做呢?

首先为啥箱式图呢?很简单,箱式图适用范围广,即适合正态分布也适合非正态分布。当数据明显非正态的时候,建议做箱式图。

箱式图,松哥也称之为5量统计图(中位数,P25,P75,最大和最小),展示数据信息较多。

为什么要在箱式图上加上散点呢?那是因为图形是对数据的浓缩,如果再加上原始数据的分布信息,那将全面清晰展示数据的特征。

图2解释

图2是柱状图+散点图。同样先说柱状图,柱状图加误差线这种图,主要用于符合正态分布资料,比较常见,但不适用于偏态分布。

增加散点也是为了展示原始数据的分布情况。

松哥漫谈

如果对数据的正态性的把握度不高,可以采用图1。图1的适用范围大于图2。常规的箱式图和柱状图,任何统计软件都可以做,但是叠加散点图,很多软件不行。

本例图1松哥用的是R软件做的,图2用的是GraphPad7.0做的。

如果您缺上述软件,或者业界任何统计软件,只要在本公众号后台消息回复该软件的名称即可。


精鼎松哥统计原创,欢迎转发分享!

---统计思维与理论系列---

【1042.】变量之间到底是单项转化还是双向转化

【1041.】统计水平自我评估表

【1040.】基线分析的3个终极目的

【1039.】统计小白的学习路径

【1038.】SCI论文中Logistic回归模型“门当户对”原则,松哥心得推荐给您

【1037.】被我们忽视的生存分析区间删失数据

【1036.】Logistic回归文章的SCI审稿人意见解读

【1035.】统计学上的2K效应,你发现了没?

【1034.】正态分布的3个基因密码,聆听大自然心跳的代码!

【1033.】生存分析K-M法与COX回归结论不一致怎么办?

【1032.】异常值的处理只有删除?

【1031.】没有比较就没有伤害,让咱们互相伤害吧,教你4大类统计伤害方法

【1030.】SCI审稿人让我控制2个单因素无意义的变量?

【1029.】量表评价是信度重要还是效度重要?

【1028.】Meta分析要解决的首要任务

【1027.】文章材料与方法中统计方法如何描述

【1026.】这个到底是啥统计设计?一起来看看!

【1025.】聚类分析稳定性判别的经验总结

【1024.】“参数检验与非参数检验”哪个更好?

【1023.】干预前后数据统计分析方法

【1022.】听完四个小故事,你就明白主成分分析是啥意思了!

【1021.】方差分析P>0.05,两两比较LSD法P<0.05,这可咋整?

【1020.】等级与等比,可得分清楚!

【1019.】频率与概率,如胶又似漆!

【1018.】终于发现不用学习,顿悟统计的方法

【1017.】倾向性评分后数据,应该采用配对设计还是成组设计?

【1016.】统计必学的4个核心思想

【1015.】加权最小二乘回归是什么鬼?

【1014.】平行性检验到底应该啥时候做?

【1013】统计的4维空间(一维一层天)

【1012】到底做相关?还是方差分析呢?

【1011】这篇文章凭啥这样分组呢?

【1010】常用统计分析方法选择图解

【1009】P<0.05也别理直气壮,统计也会犯错,还分犯I类和II类错误?

【1008】文章鉴析:这篇文章或许有10处不适!

【1007】R×C卡方的Fisher确切概率法为什么会有卡方值

【1006】大小优指标如何同时制作ROC曲线[经验技巧]

【1005】统计方法与统计思想谁重要?

【1004】别说相关太简单,且听松哥说相关

【1003】正态分布10种鉴别方法汇总【荐藏】

【1002】连续变量变成等级变量后,原来有意义的变量变得没意义了?

【1001】SCI论文中的P for trend是什么鬼?为什么高分文章经常采用呢

------------------------------

e21677245571e653beba71df39c2138d.png

c96ef70dbe857841c4f235e68a6474f0.gif

### 创建解读SPSS中的箱式图 #### SPSS中创建箱式图的方法 为了在SPSS中创建箱式图,需遵循特定的操作流程。打开SPSS软件并加载所需的数据集之后,在菜单栏选择`Graphs` -> `Chart Builder…`选项。在弹出的对话框里切换到“Gallery”标签页,从中挑选适合展示单变量分布情况或者比较不同组间差异性的表类型——这里应当选取名为“Boxplot”的标样式[^2]。 接着点击确认按钮完成初步设定后,会进入形构建器界面,在此进一步指定要分析的具体变量以及分组依据(如果有)。对于连续型数值字段而言,通常将其拖拽放置于Y轴位置作为主要考察对象;而对于分类属性,则可安排至X轴方向充当对比维度的一部分。最后调整好各项参数配置再执行绘命令即可得到所期望的结果像。 #### 解读箱式图的关键要素 当面对一张由SPSS生成的标准版箱形时,有几个核心组成部分值得注意: - **箱子主体**:位于中间部分的一段矩形区域代表了数据集中处于第25百分位数(Q1)至75百分位数(Q3)之间的范围,也叫做四分位区间(IQR),它直观反映了大部分观测值聚集的程度。 - **中位数线**:贯穿整个盒子内部的一条水平短线指示着总体样本序列排序后的中心趋势指标之一—中位数的位置所在之处。 - **上下触须端点**:从盒子两端延伸出来的两条垂直线条末端标记出了正常范围内最小值与最大值界限之外还可能存在的极端观察记录点。具体来说,这些边界定义为Q1减去1.5倍IQR以及Q3加上相同数量级乘积所得结果。任何落在上述界定以外的数据都将被单独标注出来视为潜在异常现象的表现形式。 - **离群值标识**:超出常规阈限标准外孤立显示的小圆圈或是星号符号代表着那些显著偏离整体模式特征的特殊案例个体。按照惯例,距离最近一侧盒边沿达到或超过1.5倍乃至3倍以上IQR长度者会被特别指出,并且前者称为温离群点(mild outlier),后者则属于极端离群点(extreme outlier)。 ```r # R语言绘制箱线示例代码供参考 boxplot(data$variable, main="Title of Box Plot", ylab="Variable Name", col=c("lightblue"), border="black", horizontal=FALSE, notch=TRUE, outline=TRUE) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值