相机标定matlab版本,相机标定 matlab

该博客详细介绍了MATLAB中进行摄像机标定的过程,包括从世界坐标系到相机坐标系,再到像素坐标系的转换。通过理解相机的内外参数,如R、t和K,以及投影矩阵P,读者可以学习如何使用提供的代码进行三维点到二维点的映射。博客包含多个辅助函数,用于坐标转换、误差分析和校正图像畸变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【实例简介】

matlab 相机标定代码 摄像机标定(Camera calibration)简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵的过程。

[1]基本的坐标系:

世界坐标系;

相机坐标系;

成像平面坐标系;

像素坐标系

[2]一般来说,标定的过程分为两个部分:

第一步是从世界坐标系转为相机坐标系,这一步是三维点到三维点的转换,包括R,t(相机外参,确定了相机在某个三维空间中的位置和朝向)等参数;

第二部是从相机坐标系转为成像平面坐标系(像素坐标系),这一步是三维点到二维点的转换,包括K(相机内参,是对相机物理特性的近似)等参数;

投影矩阵 : P=K [ R | t ]

【实例截图】

【核心代码】

d157ff39-ba7a-416f-a0bb-6edce5c0c3f5

└── TOOLBOX_calib

├── add_suppress.m

├── affine.m

├── align_structures.m

├── analyse_error.m

├── anisdiff.m

├── apply_distortion2.m

├── apply_distortion.m

├── apply_fisheye_distortion.m

├── calib_data.mat

├── calib_gui_fisheye.m

├── calib_gui.m

├── calib_gui_no_read.m

├── calib_gui_normal.m

├── calib.m

├── calibration_pattern

│   ├── pattern.eps

│   └── pattern.pdf

├── calib_stereo.m

├── cam_proj_calib.m

├── cam_proj_calib_optim.m

├── cam_proj_extract_param.m

├── centercirclefinder.m

├── check_active_images.m

├── check_convergence.m

├── check_directory.m

├── check_extracted_images.m

├── clear_windows.m

├── clearwin.m

├── click_calib_fisheye_no_read.m

├── click_calib.m

├── click_calib_no_read.m

├── click_ima_calib3D.m

├── click_ima_calib_fisheye_no_read.m

├── click_ima_calib_fisheye_no_read.m~

├── click_ima_calib.m

├── click_ima_calib_no_read.m

├── click_stereo.m

├── combine_calib.m

├── comp_distortion2.m

├── comp_distortion.m

├── comp_distortion_oulu.m

├── comp_error_calib_fisheye.m

├── comp_error_calib.m

├── comp_ext_calib_fisheye.m

├── comp_ext_calib.m

├── comp_fisheye_distortion.m

├── compose_motion.m

├── Compute3D.m

├── compute_collineation.m

├── compute_epipole.m

├── compute_extrinsic_init_fisheye.m

├── compute_extrinsic_init.m

├── compute_extrinsic.m

├── compute_extrinsic_refine2.m

├── compute_extrinsic_refine_fisheye.m

├── compute_extrinsic_refine.m

├── compute_homography.m

├── ComputeStripes.m

├── cornerfinder2.m

├── cornerfinder.m

├── cornerfinder_saddle_point.m

├── count_squares_distorted.m

├── count_squares_fisheye_distorted.m

├── count_squares.m

├── dAB.m

├── data_calib.m

├── data_calib_no_read.m

├── Distor2Calib.m

├── downsample.m

├── edgefinder.m

├── eliminate_boundary.m

├── error_analysis.m

├── error_cam_proj2.m

├── error_cam_proj3.m

├── error_cam_proj.m

├── error_depth_list.m

├── error_depth.m

├── export_calib_data.m

├── ext_calib2.m

├── ext_calib.m

├── ext_calib_stereo.m

├── extract_distortion_data.m

├── extract_grid.m

├── extract_grid_manual.m

├── extract_parameters3D.m

├── extract_parameters_fisheye.m

├── extract_parameters.m

├── extrinsic_computation.m

├── fixallvariables.m

├── fixvariable.m

├── fov.m

├── ginput2.m

├── ginput3.m

├── ginput4.m

├── go_calib_optim_fisheye_no_read.asv

├── go_calib_optim_fisheye_no_read.m

├── go_calib_optim_iter_fisheye.m

├── go_calib_optim_iter.m

├── go_calib_optim_iter_weak.m

├── go_calib_optim.m

├── go_calib_optim_no_read.m

├── go_calib_stereo.m

├── ima_read_calib.m

├── ima_read_calib_no_read.m

├── init_intrinsic_param_fisheye.m

├── init_intrinsic_param.m

├── inverse_motion.m

├── is3D.m

├── load_image.m

├── loading_calib.m

├── loading_stereo_calib.m

├── loadinr.m

├── loadpgm.m

├── loadppm.m

├── load_stereo_calib_files.m

├── manual_corner_extraction.m

├── manual_corner_extraction_no_read.m

├── mean_std_robust.m

├── merge_calibration_sets.m

├── merge_two_datasets.m

├── Meshing.m

├── mosaic.m

├── mosaic_no_read.m

├── normalize2.m

├── normalize.m

├── normalize_pixel_fisheye.m

├── normalize_pixel.m

├── pattern.eps

├── pgmread.m

├── point_distribution.m

├── project2_oulu.m

├── projectedGrid.m

├── projector_calib.m

├── projector_ima_corners.m

├── projector_marker.m

├── project_points2.m

├── project_points3.m

├── project_points_fisheye.m

├── project_points.m

├── project_points_weak.m

├── README.txt

├── readras.m

├── recomp_corner_calib_fisheye_no_read.m

├── recomp_corner_calib.m

├── recomp_corner_calib_no_read.m

├── recomp_corner_calib_saddle_points.m

├── Rectangle2Square.m

├── rectify_stereo_pair.m

├── rect_index.m

├── rect.m

├── reproject_calib.m

├── reproject_calib_no_read.m

├── rigid_motion.m

├── rodrigues.m

├── rotation.m

├── run_error_analysis.m

├── saveinr.m

├── savepgm.m

├── saveppm.m

├── saving_calib_ascii_fisheye.m

├── saving_calib_ascii.m

├── saving_calib_fisheye.m

├── saving_calib.m

├── saving_calib_no_results.m

├── saving_stereo_calib.m

├── scanner_calibration_script.m

├── scanning_script.m

├── script_fit_distortion_fisheye.m

├── script_fit_distortion.m

├── show_calib_results_fisheye.m

├── show_calib_results.m

├── show_stereo_calib_results.m

├── show_window.m

├── skew3.m

├── small_test_script.m

├── smooth_images.m

├── startup.m

├── stereo_gui.m

├── stereo_triangulation.m

├── TestFunction.m

├── undistort_image_color.m

├── undistort_image.m

├── undistort_image_no_read.m

├── undistort_sequence.m

├── UnWarpPlane.m

├── visualize_distortions.m

├── willson_convert.m

├── willson_read.m

├── write_image.m

└── writeras.m

2 directories, 189 files

matlab 相机标定代码 摄像机标定(Camera calibration)简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵的过程。 [1]基本的坐标系: 世界坐标系; 相机坐标系; 成像平面坐标系; 像素坐标系 [2]一般来说,标定的过程分为两个部分: 第一步是从世界坐标系转为相机坐标系,这一步是三维点到三维点的转换,包括R,t(相机外参,确定了相机在某个三维空间中的位置和朝向)等参数; 第二部是从相机坐标系转为成像平面坐标系(像素坐标系),这一步是三维点到二维点的转换,包括K(相机内参,是对相机物理特性的近似)等参数; 投影矩阵 : P=K [ R | t ] 是一个3×4矩阵,混合了内参和外参而成。 P=K[Rt] 二.基本知识介绍及 1、摄像机模型 Pinhole Camera模型如下图所示: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 是一个小孔成像的模型,其中: [1]O点表示camera centre,即相机的中心点,也是相机坐标系的中心点; [2]z轴表示principal axis,即相机的主轴; [3]q点所在的平面表示image plane,即相机的像平面,也就是图片坐标系所在的二维平面; [4]O1点表示principal point,即主点,主轴与像平面相交的点; [5]O点到O1点的距离,也就是右边图中的f,即相机的焦距; [6]像平面上的x和y坐标轴是与相机坐标系上的X和Y坐标轴互相平行的; [7]相机坐标系是以X,Y,Z(大写)三个轴组成的且原点在O点,度量值为米(m); [8]像平面坐标系是以x,y(小写)两个轴组成的且原点在O1点,度量值为米(m); [9]像素坐标系一般指图片相对坐标系,在这里可以认为和像平面坐标系在一个平面上,不过原点是在图片的角上,而且度量值为像素的个数(pixel); 2、相机坐标系→成像平面坐标系 [1]以O点为原点建立摄像机坐标系。点Q(X,Y,Z)为摄像机坐标系空间中的一点,该点被光线投影到图像平面上的q(x,y,f)点。 图像平面与光轴z轴垂直,和投影中心距离为f (f是相机的焦距)。按照三角比例关系可以得出: x/f = X/Z y/f = Y/Z ,即 x = fX/Z y = fY/Z 以图像平面的左上角或左下角为原点建立坐标系。假设像平面坐标系原点位于图像左下角,水平向右为u轴,垂直向上为v轴,均以像素为单位。 以图像平面与光轴的交点O1 为原点建立坐标系,水平向右为x轴,垂直向上为y轴。原点O1一般位于图像中心处,O1在以像素为单位的图像坐标系中的坐标为(u0, v0)。 像平面坐标系和像素坐标系虽然在同一个平面上,但是原点并不是同一个。 摄像机模型与标定 - 小企鹅 - 企鹅的博客 设每个像素的物理尺寸大小为 dx * dy (mm) ( 由于单个像素点投影在图像平面上是矩形而不是正方形,因此可能dx != dy), 图像平面上某点在成像平面坐标系中的坐标为(x, y),在像素坐标系中的坐标为(u, v),则二者满足如下关系:[即(x, y)→(u, v)] u = x / dx + u0 v = y / dy + v0 用齐次坐标与矩阵形式表示为: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将等式两边都乘以点Q(X,Y,Z)坐标中的Z可得: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将摄像机坐标系中的(1)式代入上式可得: 则右边第一个矩阵和第二个矩阵的乘积亦为摄像机的内参数矩阵(单位为像素),相乘后可得: (2) 和(1)式相比,此内参数矩阵中f/dx, f/dy, cx/dx+u0, cy/dy+v0 的单位均为像素。令内参数矩阵为K,则上式可写成: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 (3) 三.相机内参K(与棋盘所在空间的3D几何相关) 在计算机视觉中,摄像机内参数矩阵 其中 f 为摄像机的焦距,单位一般是mm;dx,dy 为像元尺寸;u0,v0 为图像中心。 fx = f/dx, fy = f/dy,分别称为x轴和y轴上的归一化焦距. 为更好的理解,举个实例: 现以NiKon D700相机为例进行求解其内参数矩阵: 就算大家身边没有这款相机也无所谓,可以在网上百度一下,很方便的就知道其一些参数—— 焦距 f = 35mm 最高分辨率:4256×2832 传感器尺寸:36.0×23.9 mm 根据以上定义可以有: u0= 4256/2 = 2128 v0= 2832/2 = 1416 dx = 36.0/4256 dy = 23.9/2832 fx = f/dx = 4137.8 fy = f/dy = 4147.3 分辨率可以从显示分辨率与图像分辨率两个方向来分类。 [1]显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。由于屏幕上的点、线和面都是由像素组成的, 显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。 可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。 显示分辨率一定的情况下,显示屏越小图像越清晰,反之,显示屏大小固定时,显示分辨率越高图像越清晰。 [2]图像分辨率则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。 四.畸变参数(与点集如何畸变的2D几何相关。) 采用理想针孔模型,由于通过针孔的光线少,摄像机曝光太慢,在实际使用中均采用透镜,可以使图像生成迅速,但代价是引入了畸变。 有两种畸变对投影图像影响较大: 径向畸变和切向畸变。 1、径向畸变 对某些透镜,光线在远离透镜中心的地方比靠近中心的地方更加弯曲,产生“筒形”或“鱼眼”现象,称为径向畸变。 一般来讲,成像仪中心的径向畸变为0,越向边缘移动,畸变越严重。不过径向畸变可以通过下面的泰勒级数展开式来校正: xcorrected = x(1+k1r2+k2r4+k3r6) ycorrected = y(1+k1r2+k2r4+k3r6) 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 对于一般的摄像机校正,通常使用泰勒级数中的前两项k1和k2就够了;对畸变很大的摄像机,比如鱼眼透镜,可以使用第三径向畸变项k3 2、切向畸变 当成像仪被粘贴在摄像机的时候,会存在一定的误差,使得图像平面和透镜不完全平行,从而产生切向畸变。也就是说,如果一个矩形被投影到成像仪上时, 可能会变成一个梯形。切向畸变可以通过如下公式来校正: xcorrected = x + [ 2p1y + p2 (r2 + 2x2) ] ycorrected = y + [ 2p2x + p1 (r2 + 2y2) ] 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 五.摄像机的外参数 旋转向量(大小为1×3的矢量或旋转矩阵3×3)和平移向量(tx,ty,tz)。 旋转向量:旋转向量是旋转矩阵紧凑的变现形式,旋转向量为1×3的行矢量。 r就是旋转向量,旋转向量的方向是旋转轴 ,旋转向量的模为围绕旋转轴旋转的角度。 通过上面的公式,我们就可以求解出旋转矩阵R。同样的已知旋转矩阵,我们也可以通过下面的公式求解得到旋转向量: 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值