本文是对论文 Learning Latent Permutations with Gumbel-Sinkhorn Networks的阅读笔记。
很多时候我们都希望学习一个置换矩阵(permutation matrix),用来找到一个合适的排序,或者解决一个指派问题,就是找到一个最优的分配策略,他可以用匈牙利算法在多项式时间内解决,然后这个问题是不可微的,也就不能放在神经网络中。他可以形式化的写作:
其中X是NxN维矩阵表示每个指派的收益,P是置换矩阵。
指派问题与softmax的联系
其实仔细想想,置换矩阵不就是相当于每一行每一列都是一个one-hot吗,而one-hot一个著名的弱化的例子就是softmax了,我们知道当softmax的温度趋于0的时候,softmax会变成one-hot:
那么他跟指派问题有什么关系呢?其实我们可以定义一个对行列不停地分别除以每一行的和,以及除以每一列的和的操作,这个操作称为Sinkhorn operator S(X) 可以定义如下:
其中
可以证明
定理1: 定义随机矩阵P的熵为
如果X的产生是独立的,那么一定有
现在证明第一个,考虑如下拉格朗日有约束的优化:
令
也就是说对于任意正数的对角矩阵

与softmax的联系
实际上,以上的推导只是基于一个softmax的原理简单的推广:
即是softmax所近似的argmax值,实际上,这个argmax可以表示成一个关于one-hot向量的优化问题,即寻找一个one-hot向量,使得他跟x的内积最大:
跟上面的证明差不多,我们可以写出e的带约束的拉格朗日公式,并对e求导,令它等于0,可以得到e的形式就是一个softmax公式,于是
可以简单证明一下:
又因为
于是我们理解permutation matrix本质上可以弱化为softmax组成的矩阵,因此我们完全可以利用gumbel分布对softmax的重参数化能力来重参数化这个置换矩阵,从而采用VAE来求解一个隐变量时置换矩阵的生成模型,而这就是这篇论文所做的贡献了。
关于gumbel分布,可以参考我之前的另外一篇文章
带你认识神奇的Gumbel trickblog.csdn.net对softmax的进一步思考
当我们把softmax写成下面这一条公式的时候,事情就变得越发有趣:
我们发现,softmax的指数项的来源,其实是那个
答案是肯定的,在论文[3]中说明了,只要将香农熵换成,Gini entropy:
实际上,这个sparse softmax是在论文 [2] 中提出的,有了这个思路,其实我们能够推导出各种各样的变种,论文就提出了用Tsallis α-entropies:
于是就推导出了entmax
这部分有兴趣的各位可以去看看[3].
参考文献
[1] Mena G, Belanger D, Linderman S et.al. Learning Latent Permutations with Gumbel-Sinkhorn Networks[J]. Iclr 2018, 2018(2011): 1–14.
[2] Martins A F T, Astudillo R F. From softmax to sparsemax: A sparse model of attention and multi-label classification[J]. 33rd International Conference on Machine Learning, ICML 2016, 2016, 4: 2432–2443.
[3] Peters B, Niculae V, Martins A F T. Sparse Sequence-to-Sequence Models[J]. 2019.