置换怎么表示成轮换_置换矩阵也能求导优化

本文探讨了置换矩阵在解决指派问题中的应用,指出置换矩阵可以被视为弱化的softmax。通过Sinkhorn operator与熵的关系,证明了置换矩阵与softmax的联系。文章进一步阐述了如何使用gumbel分布重参数化softmax来求解置换矩阵,提出使用VAE进行模型构建。此外,文章还提及了softmax的变种,如sparse softmax和entmax,拓展了softmax在序列到序列模型中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是对论文 Learning Latent Permutations with Gumbel-Sinkhorn Networks的阅读笔记。

很多时候我们都希望学习一个置换矩阵(permutation matrix),用来找到一个合适的排序,或者解决一个指派问题,就是找到一个最优的分配策略,他可以用匈牙利算法在多项式时间内解决,然后这个问题是不可微的,也就不能放在神经网络中。他可以形式化的写作:

其中X是NxN维矩阵表示每个指派的收益,P是置换矩阵。

是Frobenius内积。

指派问题与softmax的联系

其实仔细想想,置换矩阵不就是相当于每一行每一列都是一个one-hot吗,而one-hot一个著名的弱化的例子就是softmax了,我们知道当softmax的温度趋于0的时候,softmax会变成one-hot:

那么他跟指派问题有什么关系呢?其实我们可以定义一个对行列不停地分别除以每一行的和,以及除以每一列的和的操作,这个操作称为Sinkhorn operator S(X) 可以定义如下:

其中

,可以证明S(X)一定会收敛到一个叫Birkhoff polytope的空间上,记为

可以证明

是包含所有置换矩阵的。于是,指派问题与softmax的联系可以用下面这个定理联系起来:

定理1: 定义随机矩阵P的熵为

,则

如果X的产生是独立的,那么一定有

现在证明第一个,考虑如下拉格朗日有约束的优化:

一定有对于每个

也就是说对于任意正数的对角矩阵

都有
根据Sinkhorn's theorem, 一定有

77b7463463577d4ebafdf9e8bb1f1db1.png

与softmax的联系

实际上,以上的推导只是基于一个softmax的原理简单的推广:

即是softmax所近似的argmax值,实际上,这个argmax可以表示成一个关于one-hot向量的优化问题,即寻找一个one-hot向量,使得他跟x的内积最大:

跟上面的证明差不多,我们可以写出e的带约束的拉格朗日公式,并对e求导,令它等于0,可以得到e的形式就是一个softmax公式,于是

可以简单证明一下:

又因为

,所以一定有
.

于是我们理解permutation matrix本质上可以弱化为softmax组成的矩阵,因此我们完全可以利用gumbel分布对softmax的重参数化能力来重参数化这个置换矩阵,从而采用VAE来求解一个隐变量时置换矩阵的生成模型,而这就是这篇论文所做的贡献了。

关于gumbel分布,可以参考我之前的另外一篇文章

带你认识神奇的Gumbel trick​blog.csdn.net

对softmax的进一步思考

当我们把softmax写成下面这一条公式的时候,事情就变得越发有趣:

我们发现,softmax的指数项的来源,其实是那个

产生,因为里面有个log,为了得到偏导数等于0的e,这个log要取个指数项消掉。然而对于熵
,其实除了香农熵的经典定义外,还有很多其他的定义的,这是否意味着,softmax还拥有其他的变种?

答案是肯定的,在论文[3]中说明了,只要将香农熵换成,Gini entropy:

,就能推导出全新的sparse softmax,这个softmax具有sparse的性质:

实际上,这个sparse softmax是在论文 [2] 中提出的,有了这个思路,其实我们能够推导出各种各样的变种,论文就提出了用Tsallis α-entropies:

于是就推导出了entmax

这部分有兴趣的各位可以去看看[3].

参考文献

[1] Mena G, Belanger D, Linderman S et.al. Learning Latent Permutations with Gumbel-Sinkhorn Networks[J]. Iclr 2018, 2018(2011): 1–14.

[2] Martins A F T, Astudillo R F. From softmax to sparsemax: A sparse model of attention and multi-label classification[J]. 33rd International Conference on Machine Learning, ICML 2016, 2016, 4: 2432–2443.

[3] Peters B, Niculae V, Martins A F T. Sparse Sequence-to-Sequence Models[J]. 2019.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值