android设备模型,Pytroch模型部署到Android设备

本文介绍如何将预训练的TorchScript Resnet18模型部署到Android应用中,通过PyTorch Android API进行图像分类。首先,讨论了如何准备和序列化模型,然后讲解如何在Android Studio项目中集成PyTorch库,加载模型并处理输入图像,最后运行推理并获取结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本项目是一个简单的图像分类应用程序,演示了如何使用PyTorch Android API。此应用程序在静态图像上运行TorchScript序列化的TorchVision预训练的resnet18模型,该模型作为Android资产打包在应用程序内部。

1.模型准备

让我们从模型准备开始。如果您熟悉PyTorch,您可能应该已经知道如何训练和保存模型。如果您不这样做,我们将使用预先训练的图像分类模型(Resnet18),该模型包装在TorchVision中。要安装它,请运行以下命令:

pip install torchvision

要序列化模型,可以在HelloWorld应用的根文件夹中使用python 代码:

import torch

import torchvision

model = torchvision.models.resnet18(pretrained=True)

model.eval()

example = torch.rand(1, 3, 224, 224)

traced_script_module = torch.jit.trace(model, example)

traced_script_module.save("app/src/main/assets/model.pt")

如果一切正常,我们应该拥有我们的模型- model.pt在android应用程序的Assets文件夹中生成。它将被打包为android应用程序内部,asset并且可以在设备上使用。

2.从github克隆

git clone https://github.com/pytorch/android-demo-app.gitcd HelloWorldApp

如果已经安装了Android SDK和Android NDK,则可以使用以下命令将此应用程序安装到连接的android设备或模拟器上:

./gradlew installDebug

我们建议您在A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值