相等变为1 编号_量子力学中的线性代数(Qiskit 学习笔记之1)

本文以Qiskit教程为基础,介绍了量子计算中的线性代数基础知识,如向量、向量空间、矩阵、酉矩阵和Hilbert空间。讨论了向量的线性相关性、内积以及在量子门操作中的应用,强调了酉矩阵在保持向量范数不变中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇文章主要参考Qiskit的教程

https://qiskit.org/textbook/ch-appendix/linear_algebra.html

线性代数是量子计算的语言。本篇文章的目的在于介绍量子计算中最基本的线性代数原理,读者可以在此基础上进行量子计算的相关研究。

向量与向量空间

无论是传统还是量子计算中的线性代数,最基础、最重要的概念之一就是向量。一个直觉性、几何性的定义方法是:向量 |v⟩ 是拥有方向与大小的数学量。举例来说,一个拥有两个元素,分别为3和5的向量可以表示为 (3,5) 。这个向量可以在坐标轴上以可视化的方式展示出来:

ecde252a0a5de218aa1c84121f13c280.png

请注意向量并不一定以原点作为起始点,我们只需要将方向与大小描绘正确就可以了。

在量子计算中,我们经常遇到的一个概念为“状态向量(state vector)”,这个向量指向空间里的一个点,这个点对应着一个量子态。我们可以利用Bloch球(Bloch sphere)对状态向量进行可视化。举例来说,代表了一个量子系统状态的向量,可以被视为Bloch球内的一个箭头,Bloch球也成为状态向量的“状态空间”。

9c8ee894e68cd5c60074caeef248ca73.png

在Bloch球上,每个状态都对应为向量|0⟩和|1⟩的叠加(每个箭头都位于最上面 |0⟩ 向量的下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值