本篇文章主要参考Qiskit的教程
https://qiskit.org/textbook/ch-appendix/linear_algebra.html
线性代数是量子计算的语言。本篇文章的目的在于介绍量子计算中最基本的线性代数原理,读者可以在此基础上进行量子计算的相关研究。
向量与向量空间
无论是传统还是量子计算中的线性代数,最基础、最重要的概念之一就是向量。一个直觉性、几何性的定义方法是:向量 |v⟩ 是拥有方向与大小的数学量。举例来说,一个拥有两个元素,分别为3和5的向量可以表示为 (3,5) 。这个向量可以在坐标轴上以可视化的方式展示出来:
请注意向量并不一定以原点作为起始点,我们只需要将方向与大小描绘正确就可以了。
在量子计算中,我们经常遇到的一个概念为“状态向量(state vector)”,这个向量指向空间里的一个点,这个点对应着一个量子态。我们可以利用Bloch球(Bloch sphere)对状态向量进行可视化。举例来说,代表了一个量子系统状态的向量,可以被视为Bloch球内的一个箭头,Bloch球也成为状态向量的“状态空间”。
在Bloch球上,每个状态都对应为向量|0⟩和|1⟩的叠加(每个箭头都位于最上面 |0⟩ 向量的下