协方差公式性质证明过程_相关函数的协方差的性质

本文详细介绍了协方差的三个基本性质:对称性、标量乘法性质和线性组合性质,并通过定义解释了协方差的正负与变量变化趋势的关系。协方差的绝对值大小反映两个变量变化的一致程度,而相关系数则是协方差与变量标准差乘积的比值,用于衡量两者相关程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

展开全部

协方62616964757a686964616fe58685e5aeb931333431353239差的性质:

1、Cov(X,Y)=Cov(Y,X);

2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);

3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。

由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。

协方差函数定义为:

132cc1ebc5a90ee73668c89ff360b827.png

若X(t)=Y(t)+i*Z(t),Y,Z为实过程,则称X(t)为复随机过程,相关函数定义为:

9d3d5427b1c5cd62cfc1462a55ef9d3b.png

2d3ff0bd86337748eec366141de428d8.png

扩展资料

协方差反映了两个变量之间的相关程度:

协方差是两个变量与自身期望做差再相乘,然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同,此时,两个变量之间的协方差取正值。

反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值