利用点到直线的距离最小二乘法_最小二乘法拟合直线

该代码实现了一个二维点集的直线拟合算法,使用了高斯消元法求解最小二乘问题。首先计算点集的统计信息,然后构造矩阵并求解,最终得出直线方程。代码中提供了两个点集示例进行测试,并将结果输出到文件中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

void fitLine(const TColgp_Array1OfPnt2d&thePoints,const std::string&theFileName,

gp_Lin2d&theLine)

{

math_Vector aB(1, 2, 0.0);

math_Vector aX(1, 2, 0.0);

math_Matrix aM(1, 2, 1, 2);

Standard_Real aSxi= 0.0;

Standard_Real aSyi= 0.0;

Standard_Real aSxx= 0.0;

Standard_Real aSxy= 0.0;

std::ofstream aDrawFile(theFileName);for (Standard_Integer i = thePoints.Lower(); i <= thePoints.Upper(); ++i)

{const gp_Pnt2d& aPoint =thePoints.Value(i);

aSxi+=aPoint.X();

aSyi+=aPoint.Y();

aSxx+= aPoint.X() *aPoint.X();

aSxy+= aPoint.X() *aPoint.Y();

aDrawFile<< "vpoint p" << i << " " <

}

aM(1, 1) =thePoints.Size();

aM(1, 2) =aSxi;

aM(2, 1) =aSxi;

aM(2, 2) =aSxx;

aB(1) =aSyi;

aB(2) =aSxy;

OSD_Chronometer aChronometer;

aChronometer.Start();

math_Gauss aSolver(aM);//math_GaussLeastSquare aSolver(aM);//math_SVD aSolver(aM);

aSolver.Solve(aB, aX);if(aSolver.IsDone())

{

Standard_Real aA= aX(1);

Standard_Real aB= aX(2);

gp_Pnt2d aP1(0.0, aA);

gp_Pnt2d aP2(-aA/aB, 0.0);

theLine.SetLocation(aP1);

theLine.SetDirection(gp_Vec2d(aP1, aP2).XY());

aDrawFile<< "vaxis l"

<< aP1.X() << " " << aP1.Y() << "0"

<< aP2.X() << " " << aP2.Y() << "0" <<:endl>

std::cout<< "===================" <<:endl>

aX.Dump(std::cout);

}

aChronometer.Stop();

aChronometer.Show();

}intmain()

{

gp_Lin2d aLine;//Test data 1

TColgp_Array1OfPnt2d aPoints1(1, 6);

aPoints1.SetValue(1, gp_Pnt2d(36.9, 181.0));

aPoints1.SetValue(2, gp_Pnt2d(46.7, 197.0));

aPoints1.SetValue(3, gp_Pnt2d(63.7, 235.0));

aPoints1.SetValue(4, gp_Pnt2d(77.8, 270.0));

aPoints1.SetValue(5, gp_Pnt2d(84.0, 283.0));

aPoints1.SetValue(6, gp_Pnt2d(87.5, 292.0));

fitLine(aPoints1,"fit1.tcl", aLine);//Test data 2

TColgp_Array1OfPnt2d aPoints2(0, 7);

aPoints2.SetValue(0, gp_Pnt2d(0.0, 27.0));

aPoints2.SetValue(1, gp_Pnt2d(1.0, 26.8));

aPoints2.SetValue(2, gp_Pnt2d(2.0, 26.5));

aPoints2.SetValue(3, gp_Pnt2d(3.0, 26.3));

aPoints2.SetValue(4, gp_Pnt2d(4.0, 26.1));

aPoints2.SetValue(5, gp_Pnt2d(5.0, 25.7));

aPoints2.SetValue(6, gp_Pnt2d(6.0, 25.3));

aPoints2.SetValue(7, gp_Pnt2d(7.0, 24.8));

fitLine(aPoints2,"fit2.tcl", aLine);return 0;

}

【基于QT的调色板】是一个使用Qt框架开发的色彩选择工具,类似于Windows操作系统中常见的颜色选取器。Qt是一个跨平台的应用程序开发框架,广泛应用于桌面、移动嵌入式设备,支持C++QML语言。这个调色板功能提供了横竖两种渐变模式,用户可以方便地选取所需的颜色值。 在Qt中,调色板(QPalette)是一个关键的类,用于管理应用程序的视觉样式。QPalette包含了一系列的颜色角色,如背景色、前景色、文本色、高亮色等,这些颜色可以根据用户的系统设置或应用程序的需求进行定制。通过自定义QPalette,开发者可以创建具有独特视觉风格的应用程序。 该调色板功能可能使用了QColorDialog,这是一个标准的Qt对话框,允许用户选择颜色。QColorDialog提供了一种简单的方式来获取用户的颜色选择,通常包括一个调色板界面,用户可以通过滑动或点击来选择RGB、HSV或其他色彩模型中的颜色。 横渐变取色可能通过QGradient实现,QGradient允许开发者创建线性或径向的色彩渐变。线性渐变(QLinearGradient)沿直线从一个点到另一个点过渡颜色,而径向渐变(QRadialGradient)则以圆心为中心向外扩散颜色。在调色板中,用户可能可以通过滑动条或鼠标拖动来改变渐变的位置,从而选取不同位置的颜色。 竖渐变取色则可能是通过调整QGradient的方向来实现的,将原本水平的渐变方向改为垂直。这种设计可以提供另一种方式来探索颜色空间,使得选取颜色更为直观便捷。 在【colorpanelhsb】这个文件名中,我们可以推测这是与HSB(色相、饱度、亮度)色彩模型相关的代码或资源。HSB模型是另一种常见且直观的颜色表示方式,与RGB或CMYK模型不同,它以人的感知为基础,更容易理解。在这个调色板中,用户可能可以通过调整H、S、B三个参数来选取所需的颜色。 基于QT的调色板是一个利用Qt框架其提供的色彩管理工具,如QPalette、QColorDialog、QGradient等,构建的交互式颜色选择组件。它不仅提供了横竖渐变的色彩选取方式,还可能支持HSB色彩模型,使得用户在开发图形用户界面时能更加灵活精准地控制色彩。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值