
随着云计算,大数据和人工智能技术发展,边缘计算发挥着越来越重要的作用,补充数据中心算力需求。计算架构要求多样化,需要不同的CPU架构来满足不断增长的算力需求,同时需要GPU,NPU和FPGA等技术加速特定领域的算法和专用计算。以此,不同CPU架构,不同加速技术应用而生。
备注:笔者对算力服务器相关知识做了梳理,整理成“数据中心服务器知识全解”电子书,全书共190页,分18个章节,详情可通过原文链接获取。
理解 GPU 和 CPU 之间区别的一种简单方式是比较它们如何处理任务。CPU 由专为顺序串行处理而优化的几个核心组成,而 GPU 则拥有一个由数以千计的更小、更高效的核心(专为同时处理多重任务而设计)组成的大规模并行计算架构。
CPU是一个有多种功能的优秀领导者。它的优点在于调度、管理、协调能力强,计算能力则位于其次。而GPU相当于一个接受CPU调度的“拥有大量计算能力”的员工。

GPU可以利用多个CUDA核心来做并行计算,而CPU只能按照顺序进行串行计算,同样运行3000次的简单运算,CPU需要3000个时钟周期,而配有3000个CUDA核心的GPU运行只需要1个时钟周期。
简而言之,CPU擅长统领全局等复杂操作,GPU擅长对大数据进行简单重复操作。CPU是从事复杂脑力