Eigen中的矩阵及向量运算tips1,【+,+=,-,-=】2,【\*,\*=】3,【.transpose()】4,【.dot(),.cross(),.adjoint()】5,针对矩阵元素进行的操作【.sum(),.prod(),.mean(),minCoeff(),.maxCoeff,.trace()】6,【.norm()】向量求模,矩阵范数
本文严重参考了博客链接的部分内容,更像是该博客的阅读笔记,用于速查,直接看该博客会有更直观理解
一个很好的资料
tips1, Eigen中的矩阵和向量运算不会自动适应行列数,需要在编程的时候保证参与运算的矩阵和向量行列数可以进行运算2,头文件 中包含【+,-,*,/,+=,-=,*=,.transpose()…sum(),.prod(),.mean(),minCoeff(),.maxCoeff,.trace()】等运算符3,头文件中包含【.dot(),.cross(),adjoint()】等运算符4,以下讨论的符号约定(假设满足运算的行列数要求)
矩阵:a,b
向量:u,v
常数:c1,【+,+=,-,-=】
适用于尺寸相同的矩阵之间、尺寸相同的向量之间的对应元素相加减2,【*,*=】1,用于矩阵与矩阵:尺寸合适的矩阵的一般矩阵乘法。此时,向量可以看成是矩阵2,用于矩阵与标量:矩阵与标量的一般乘法,矩阵每个元素与标量相乘。此时,向量可以看成是矩阵3,【.transpose()】
返回矩阵的转置。此时,向量可以看成是矩阵4,【.dot(),.cross(),.adjoint()】
只用于向量
u.dot(v):u和v的点乘,即对应元素乘积的和,返回一个标量。与v.dot(u),u.transpose()*v,v.transpose()*u相同。
u.cross(v):u和v的叉积,返回一个向量。与v.cross(u)相差一个负号。
u.adjoint():返回u的共轭向量,若u为实向量,则返回结果与u相同。12345
5,针对矩阵元素进行的操作【.sum