c语言以e为底和以10为底对数,以e为底的运算法则

本文深入解析了以e为底的运算法则,包括ln(e)、ln(e^x)、e^(lnx)等,并介绍了对数公式、导数和积分的基本概念,如log(a)定义、特殊对数形式和求导规则,帮助读者理解自然对数的基础概念与计算技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以e为底的运算法则有:(1)lne=1、(2)lne^x=x、(3)lne^e=e、(4)e^(lnx)=x、(5)de^x/dx=e^x等。

14f78d83b391e7e1b8c8b22b2c8acf9c.png

运算法则

(1)lne=1

(2)lne^x=x

(3)lne^e=e

(4)e^(lnx)=x

(5)de^x/dx=e^x

(6)dlnx/dx=1/x

(7)∫e^xdx=e^x+c

(8)∫xe^xdx=xe^x-e^x+c

(9)e^x=1+x+x^2/2!+x^3/3!+x^4/4!+....

(10)d(e^xsinx)/dx=e^xsinx+e^xcosx=e^x(sinx+cosx)

对数公式

对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

推导公式

log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)

loga(b)*logb(a)=1

loge(x)=ln(x)

lg(x)=log10(x)

求导数

(xlogax)'=logax+1/lna

其中,logax中的a为底数,x为真数;

(logax)'=1/xlna

特殊的即a=e时有

(logex)'=(lnx)'=1/x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值