jenkins 构建后shell_Linux Shell脚本语法扫盲 及 Jenkins通过shell构建个人思路

本文介绍了Jenkins构建过程中的shell脚本基础,包括控制台输出、变量声明、数组操作、逻辑运算符和流程控制。接着阐述了通过shell脚本进行项目构建的思路,如移动到项目根目录、执行Maven打包、判断WAR包存在并移动到Tomcat、清理操作及重启Tomcat等步骤,以实现自动化部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本篇文章 承接我的上一篇文章

在上一篇文章中我们已经安装好了Jenkins,并且为其注入了灵(dai)魂(ma)。当我们使用git进行push操作的时候,github会通过webhook通知我们Jenkins触发构建。构建的形式是执行我 预先设定好的 shell脚本。

Shell基础语法扫盲

在编写脚本之前我们需要先了解下shell的基本语法。(给自己扫盲。。。)

首先是控制台输出

#!/bin/bash

echo 'Hello word'

(#! 是一个约定的标记,它告诉系统这个脚本需要什么解释器来执行,即使用哪一种 Shell。)

声明变量&拼接字符串

your_name="kajie"

echo "test ${your_name} in Linux"

echo "test $your_name in Linux"

echo "test "$your_name" in Linux"

注意:echo 使用单引号 和 双引号是有区别的 单引号会将内容认定为一个字符串不会识别变量。

声明数组

array_name=(value0 value1 value2 value3)

# 或

array_name[0]=value0

array_name[1]=value1

array_name[n]=valuen

# 读取数组 ${数组名[下标]}

echo ${array_name[@]}

# 取得数组元素的个数

echo ${#array_name[@]}

# 取得数组单个元素的长度

echo ${#array_name[n]}

逻辑运算符

a 为 10,变量 b 为 20

运算符

说明

举例

-gt

大于

[ $a -gt $b ] 返回 false

-lt

小于

[ $a -ne $b ] 返回 true

-ge

大于等于

[ $a -ge $b ] 返回 false

-le

小于等于

[ $a -le $b ] 返回 true

!

非运算

[ ! false ] 返回 true

-o/||

或运算(or)

[ $a -lt 20 -o $b -gt 100 ] 返回 true

-a/&&

与运算 (and)

[ $a -lt 20 -a $b -gt 100 ] 返回 false

流程控制 (if)

a=10

b=20

# if

if [ $a==$b ]

then

echo "true";

fi

# if-else

if [$a==$b]

then

echo 'true'

else

echo 'false'

fi

# if-elseif-else

if [ $a == $b ]

then

echo "a 等于 b"

elif [ $a -gt $b ]

then

echo "a 大于 b"

elif [ $a -lt $b ]

then

echo "a 小于 b"

else

echo "没有符合的条件"

fi

流程控制 (循环)

#for循环(和java语法很像)

for loop in 1 2 3 4 5

do

echo "The value is: ${loop}"

done

# 或

for ((i=0;i<100;i++))

do

echo "The value is: ${loop}"

done

#while循环

int=0

while(( $int<=5 ))

do

echo $int

let "int++"

done

#同java 我们仍可以使用 break 和 continue 来控制训话

写入文件

file="/workspace/onetxt.txt"

if [ -w $file ]

then

echo "写入测试" >> $file

else

echo "文件不可写"

fi

学习了以上知识我们就有了 通过shell构建项目的基础。

开始构建

构建思路

首先Jenkins从gitHub中拉取的源码 被我配置到了 /opt/jenkins 默认会在 ‘~/.jenkins/jobs’

中。

首先要移动到项目的根目录

执行maven 命令进行打包 'mvn install'

判断war是否存在

检测到war包后,将war包移动到tomcat的webapps中

执行mave clear 命令清理操作痕迹

重启tomcat

Shell代码

#!/bin/bash

#tomcat 控制中心路径

tomcat_path=/opt/run_/tomcat/general-control/webapps-center

#重启tomcat 的shell脚本

restart_tomcat_sh_path=/opt/run_/tomcat/general-control/

restart_tomcat_sh_name=restart-all.sh

#从git中下载的源码路径

# ${JENKINS_HOME} 为全局变量 请事先查看 有没有声明没有在 在/etc/profile中声明

# export JENKINS_HOME=/opt/run_/tomcat/tomcat8-7979/webapps/jenkins

source_path=${JENKINS_HOME}"/workspace/springBootTest"

project=springBootTest

# war包路径 及 名称

war_path=${JENKINS_HOME}"/workspace/springBootTest/service-module/remote-manager/target/"

war_name=mymanager.war

war_file=${war_path}${war_name}

# file_path=~/.jenkins/jobs/ManenDemo/workspace/spring_provider/target

# 日志所在路径

log_file=${JENKINS_HOME}"/build_log.log"

#定义一个函数 用来写入log文件

writeLogFun(){

if [ ! -e $log_file ]

then

echo "文件不存在 新建一个"

touch ${log_file}

fi

nowtime=`date +%Y%m%d%H%M%S`

echo $nowtime$1 >> $log_file

}

writeLogFun "开始执行 mvn install命令当前路径$(pwd)"

# mvn install

mvn -f ${source_path}/pom.xml install

if [ -e $war_file ]

then

writeLogFun "检测到war包的存在"

#存在将 war包 移动到我的 tomcat 中

writeLogFun "移动${war_file}到${tomcat_path}"

mv ${war_file} ${tomcat_path}

sleep 1s

writeLogFun "移动到重启脚本路径下 启动脚本"

cd $restart_tomcat_sh_path

# . ./restart-all.sh #这个脚本是我用来重启tomcat的脚本 但我发现重启tomcat会导致请求502这是个坑

writeLogFun "执行 mvn clean"

mvn -f ${source_path}/pom.xml clean

else

```#

### 安装配置CUDA环境 #### 准备工作 为了确保在联想拯救者3070型号电脑上成功安装并配置CUDA环境,需先确认已正确设置了基础Linux环境。由于该设备采用Intel CPU,因此需要提前安装`intel-ucode`来更新微码以优化性能和稳定性[^1]。 #### 更新系统软件包 建议在开始之前进行全面的系统更新,这有助于减少潜在冲突并提高兼容性。 ```bash sudo pacman -Syu ``` #### 安装必要的依赖项 针对CUDA的支持,除了基本的操作系统外,还需额外准备一些工具和服务: - `nvidia-dkms`: 提供内核模块支持GPU计算功能; - `cuda`: NVIDIA官方发布的CUDA Toolkit集合; - `os-prober`: 如果存在多重引导需求的话可以考虑加入此组件以便识别其他分区内的操作系统; - 对于UEFI启动方式来说,应该预先部署好`efibootmgr`用于管理固件变量以及调整启动顺序。 #### 配置显卡模式切换选项 进入BIOS设置界面,定位到图形处理单元的工作状态参数位置,将其更改为高性能独立显示适配器专用运行模式而非混合型或是自动调节的形式。这一改动能够有效防止因共享资源而导致的任务调度混乱现象发生,在执行密集型运算任务时尤为重要[^2]。 #### 下载与验证驱动程序及CUDA版本 前往[NVIDIA官方网站](https://developer.nvidia.com/cuda-downloads),依据个人硬件条件挑选相匹配的目标文件下载链接。考虑到安全性和可靠性因素的影响,推荐选用.run类型的离线安装包形式来进行后续操作前的数据校验流程。 #### 执行安装命令序列 当所有准备工作都完成后,便可以通过终端依次输入下面几条指令完成整个过程: 1. 停止任何正在使用的X Server实例(仅限CLI环境下),避免干扰正常进程推进。 ```bash sudo systemctl set-default multi-user.target reboot now ``` 2. 使用管理员权限调用脚本文件,并附加特定标志位绕过某些不必要的检测环节加快速度同时降低风险系数。 ```bash sudo sh ~/Downloads/NVIDIA-Linux-x86_64*.run --silent --dkms --no-opengl-files ``` 3. 接着按照提示继续加载剩余部分直至结束为止。 ```bash sudo sh ~/Downloads/cuda_*_linux.run --override --toolkit --samplespath=/usr/local/cuda/samples/ ``` 4. 最后再恢复初始的服务级别设定让桌面再次可用起来。 ```bash sudo systemctl set-default graphical.target reboot now ``` 以上步骤均来自实际案例经验总结而成[^3]。 #### 测试新安装好的CUDA套件是否能正常使用 最后一步就是通过编写一段简单的测试代码检验刚刚建立起来的新环境能否顺利编译并通过样例程序得出预期的结果作为最终验收标准之一。 ```cpp // test_cuda.cu #include <stdio.h> __global__ void add(int a, int b, int *c){ *c = a + b; } int main(){ int c; int *dev_c; cudaMalloc((void**)&dev_c,sizeof(int)); add<<<1,1>>>(2,7,&dev_c); cudaMemcpy(&c, dev_c, sizeof(int),cudaMemcpyDeviceToHost); printf("Result is %d\n",c); cudaFree(dev_c); } ``` 编译上述源文件需要用到nvcc编译器,它是随同CUDA一起被安插进去系统的特殊组成部分。 ```bash nvcc -o test_cuda test_cuda.cu && ./test_cuda ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值