大意: 给定串$s$, $q$个询问$(l,r,k)$, 求子串$s[l,r]$的第$k$次出现位置.
本来是个简单签到题, 可惜比赛的时候还没学$SA$...... 好亏啊
相同的子串在$SA$中是一定是连续的一段$[L,R]$
满足对于$L<i\le R$都有$h_i\ge r-l+1$
可以先用线段树二分出$L,R$, 然后主席树查询第$k$大即可
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
using namespace std;
const int N = 1e5+10;
int n, q, tot, a[N], T[N];
struct {int l,r,v;} tr[N*40];
char s[N];
int c[N],rk[N],h[N],sa[N],mi[N<<2];
void build(int *a, int n, int m) {
a[n+1] = 0;
int i,*x=rk,*y=h;
for(i=1;i<=m;i++) c[i]=0;
for(i=1;i<=n;i++) c[x[i]=a[i]]++;
for(i=1;i<=m;i++) c[i]+=c[i-1];
for(i=n;i;i--) sa[c[x[i]]--]=i;
for(int k=1,p;k<=n;k<<=1) {
p=0;
for(i=n-k+1;i<=n;i++) y[++p]=i;
for(i=1;i<=n;i++) if(sa[i]>k) y[++p]=sa[i]-k;
for(i=1;i<=m;i++) c[i]=0;
for(i=1;i<=n;i++) c[x[y[i]]]++;
for(i=1;i<=m;i++) c[i]+=c[i-1];
for(i=n;i;i--) sa[c[x[y[i]]]--]=y[i];
swap(x,y); x[sa[1]]=1; p=1;
for(i=2;i<=n;i++)
x[sa[i]]=(y[sa[i-1]]==y[sa[i]] && y[sa[i-1]+k]==y[sa[i]+k])?p:++p;
if(p==n) break; m=p;
}
for(i=1;i<=n;i++) rk[sa[i]]=i;
for(int i=1,j,k=0;i<=n;i++){
if(k) k--;
j=sa[rk[i]-1];
while (a[i+k]==a[j+k]) k++;
h[rk[i]] = k;
}
}
//求最小的位置p, 使得[p,x]的最小值>=v
int find1(int o, int l, int r, int x, int v) {
if (r<=x) {
if (l==r) return mi[o]>=v?l:-1;
if (mi[rc]<v) return find1(rs,x,v);
int t = find1(ls,x,v);
return t==-1?mid+1:t;
}
if (mid>=x) return find1(ls,x,v);
int R = find1(rs,x,v);
if (R==-1||R>mid+1) return R;
int L = find1(ls,x,v);
return L==-1?R:L;
}
//求找最大的位置p, 使得[x,p]的最小值>=v
int find2(int o, int l, int r, int x, int v) {
if (x<=l) {
if (l==r) return mi[o]>=v?l:-1;
if (mi[lc]<v) return find2(ls,x,v);
int t = find2(rs,x,v);
return t==-1?mid:t;
}
if (mid<x) return find2(rs,x,v);
int L = find2(ls,x,v);
if (L==-1||L<mid) return L;
int R = find2(rs,x,v);
return R==-1?L:R;
}
int query(int u, int v, int l, int r, int k) {
if (l==r) return l;
int s = tr[tr[v].l].v-tr[tr[u].l].v;
if (s>=k) return query(tr[u].l,tr[v].l,l,mid,k);
return query(tr[u].r,tr[v].r,mid+1,r,k-s);
}
void add(int &o, int l, int r, int x) {
tr[++tot]=tr[o],o=tot,++tr[o].v;
if (l!=r) mid>=x?add(tr[o].l,l,mid,x):add(tr[o].r,mid+1,r,x);
}
int query(int p, int len, int k) {
int l = p>1?find1(1,2,n,p,len)-1:1;
int r = p<n?find2(1,2,n,p+1,len):n;
if (l<0) l = p;
if (r<0) r = p;
if (r-l+1>=k) return query(T[l-1],T[r],1,n,k);
return -1;
}
void build2(int o, int l, int r) {
if (l==r) return mi[o]=h[l],void();
build2(ls),build2(rs);
mi[o]=min(mi[lc],mi[rc]);
}
void brute_force() {
while (q--) {
int l, r, k;
scanf("%d%d%d",&l,&r,&k);
string g(s+l,s+r+1);
int pos = -1, cnt = 0;
REP(i,1,n) if (string(s+i,s+i+r-l+1)==g) {
if (++cnt==k) {
pos = i; break;
}
}
printf("%d\n", pos);
}
}
int main() {
int t;
scanf("%d", &t);
while (t--) {
scanf("%d%d%s", &n, &q, s+1);
if (n<=10) {brute_force();continue;}
REP(i,1,n) a[i]=s[i]-'a'+1;
build(a,n,26);
build2(1,2,n);
REP(i,1,n) {
T[i] = T[i-1];
add(T[i],1,n,sa[i]);
}
while (q--) {
int l, r, k;
scanf("%d%d%d", &l, &r, &k);
int len = r-l+1;
printf("%d\n", query(rk[l],r-l+1,k));
}
REP(i,0,n) T[i]=0;
while (tot) tr[tot].l=tr[tot].r=tr[tot].v=0,--tot;
}
}