When you’re nearly 40 and unmarried, and you realize you’re going to be okay

本文讲述了一位四十岁未婚女性在面对他人关于生育的提问时的内心感受,以及她如何在追求个人独立与自我实现的过程中找到内心的平静与满足。通过与女儿的互动,她反思了自己对婚姻与子女的看法,并分享了这段旅程中的思考与成长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://medium.com/the-gathering-kind/when-you-re-nearly-40-and-unmarried-and-you-realize-you-re-going-to-be-okay-f1802188394d

 

A few weeks ago my best friend’s nine-year-old daughter and I were playing.

Our play consists of her sometimes weaving pink ribbons through my hair or me helping her assemble an imaginary set for a show she’s intent on producing (she’s creative, this one).

That day, after I affixed one of the many glittery crowns she owned on her head, she asked, Are you ever going to have children, Felicia? 

I admired her moxie, the way in which she’s able to navigate terrain that one could consider a minefield.

Adults exercise politeness and discretion in a way that can sometimes be numbing, and it was such an odd relief to hear a child ask something so plainly–just because I’m the only woman she knows who doesn’t have a child of her own.

My best friend and I exchanged a look, and I replied, No, C. I don’t plan on having children. She appeared pensive, and after a few moments she nodded her head, said, okay, and we continued on with our play.

weave   vt. 编织;编排;使迂回前进

ribbon  n. 带;缎带;(勋章等的)绶带;带状物;勋表

imaginary  adj. 虚构的,假想的;想像的;虚数的

intent on  专心致志于

affix  vt. 粘上;署名;将罪责加之于

glittery  adj. 闪烁的,闪光的

crown  n. 王冠;花冠;王权;顶点

moxie  n. 精力;勇气

terrain  n. [地理] 地形,地势;领域;地带

minefield   n. 布雷区;充满隐伏危险的事物

discretion  n. 自由裁量权;谨慎;判断力;判定;考虑周到

numbing  adj. 使麻木的;使失去感觉的

odd   adj. 奇数的;古怪的;剩余的;临时的;零散的

relief  n. 救济;减轻,解除;安慰;浮雕

plainly  adv. 明白地;坦率地;平坦地;朴素地

pensive  adj. 沉思的,忧郁的;悲伤的,哀愁的

 

 

I did love, once. Yet it was love that was easily altered, one that had slowly come apart at the seams.

But for a time we lived a terrific photograph, and spoke of glinting diamonds, me swanning about in a white dress and children winding around my calves.

This life, while part of a defined plan I had for myself, felt distant, foreign–an uninhabited country for which I needed a visa and complicated paperwork for entry.

I never took to the idea of being owned by someone else; I never considered changing my name.

I never imagined myself in a white dress (I prefer blue), and I’ve never truly felt the maternal ache and tug as many of my dear friends who are mothers, describe.

Back then I viewed marriage as less of a partnership and more of a prison, but I imagine that had much to do with the man in my life.

Back then I slept on top sheets rather than between them, and I was forever poised for flight.

Back then I didn’t want children because I was certain I wouldn’t be any good at it considering my history.

altered 改变了的;蚀变的

come apart at the seams 分裂;崩溃,失败;衰落

 terrific  极好的;极其的,非常的;可怕的

glint  使闪光;使发光

calves小牛;小腿;腓;呆子

uninhabited 无人居住的,杳无人迹的

maternal 母亲的;母性的;母系的;母体遗传的

ache   疼痛

tug  拖船;拖曳;苦干

top sheet上层床单

poised   泰然自若的,镇定的;平衡的,均衡的;摆好姿势不动的,静止的

 

 

After a couple of years of playing house, this great love and I experienced a drift and while he went on to marry and have a family of his own, I never once thought I’d missed out on my chance, rather, I was relieved.

I treasure my solitude, my freedom. I didn’t want to be harvested. Back then I had so much work ahead of me, work on my self, my character, that I knew I wouldn’t be much good to anyone else.

I knew I had to make myself whole and complete before I gave even a sliver of myself to someone else.

treasure  珍爱;珍藏

solitude  孤独;隐居;荒僻的地方

 

转载于:https://www.cnblogs.com/chucklu/p/4475947.html

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy import stats import os from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.formula.api import ols import statsmodels.api as sm from scipy.stats import chi2_contingency, fisher_exact import warnings warnings.filterwarnings('ignore') # 设置matplotlib参数,使图表更美观,支持中文显示 plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置中文字体 plt.rcParams['axes.unicode_minus'] = False # 解决保存图像时负号'-'显示为方块的问题 plt.rcParams['figure.dpi'] = 300 # 设置图像DPI为300 plt.rcParams['savefig.dpi'] = 300 # 设置保存图像的DPI为300 # 创建保存结果的文件夹 if not os.path.exists('问题1结果'): os.makedirs('问题1结果') # 读取数据 file_path = '附件1:两个医院临床受试者及抑郁症的基本数据.xlsx' # 读取两个子表 df1 = pd.read_excel(file_path, sheet_name='一院临床受试者及抑郁症的基本数据', header=1) df2 = pd.read_excel(file_path, sheet_name='二院临床受试者及抑郁症的基本数据', header=1) # 重命名列以匹配实际数据 columns = ['序号', '组别', '年龄_岁', '未婚', '已婚', '离异', '丧偶', '无', '使用过抗抑郁药', '其它', '轻度', '中度', '重度'] df1.columns = columns df2.columns = columns # 添加医院标识 df1['医院'] = '医院1' df2['医院'] = '医院2' # 合并数据集 combined_df = pd.concat([df1, df2], ignore_index=True) # 数据预处理 # 将婚姻状况转换为单列分类变量 combined_df['婚姻状况'] = combined_df[['未婚', '已婚', '离异', '丧偶']].idxmax(axis=1) # 将既往抗抑郁药使用情况转换为单列分类变量 combined_df['既往用药'] = combined_df[['无', '使用过抗抑郁药', '其它']].idxmax(axis=1) # 处理抑郁程度列 for col in ['轻度', '中度', '重度']: combined_df[col] = combined_df[col].astype(str) combined_df[col] = combined_df[col].apply(lambda x: 1 if x == '1' else 0) combined_df['抑郁程度'] = combined_df[['轻度', '中度', '重度']].idxmax(axis=1) # 转换组别为字符串类型 combined_df['组别'] = combined_df['组别'].astype(str) # 添加药物名称对应关系 drug_map = {'1': '药物A', '2': '药物B', '3': '药物C'} combined_df['药物名称'] = combined_df['组别'].map(drug_map) # 年龄分析 # 描述性统计 age_stats = combined_df.groupby('组别')['年龄_岁'].describe() age_stats.to_excel('问题1结果/问题1_年龄描述性统计.xlsx') # 绘制年龄分布箱线图 plt.figure(figsize=(10, 6)) sns.boxplot(x='药物名称', y='年龄_岁', data=combined_df, palette='Set3') plt.title('各组受试者年龄分布箱线图') plt.xlabel('药物名称') plt.ylabel('年龄(岁)') plt.grid(True, linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig('问题1结果/问题1_年龄分布箱线图.png') plt.show() # 绘制年龄分布核密度图 plt.figure(figsize=(10, 6)) for group in sorted(combined_df['药物名称'].unique()): group_data = combined_df[combined_df['药物名称'] == group]['年龄_岁'] sns.kdeplot(group_data, label=group, shade=True, alpha=0.5) plt.title('各组受试者年龄分布核密度图') plt.xlabel('年龄(岁)') plt.ylabel('密度') plt.legend() plt.grid(True, linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig('问题1结果/问题1_年龄分布核密度图.png') plt.show() # ANOVA分析检验年龄差异 formula = '年龄_岁 ~ C(组别)' model = ols(formula, data=combined_df).fit() anova_table = sm.stats.anova_lm(model, typ=2) print("年龄ANOVA分析结果:") print(anova_table) # 计算效应量 eta_squared = anova_table['sum_sq'][0] / (anova_table['sum_sq'][0] + anova_table['sum_sq'][1]) print(f"年龄方差分析效应量 (Eta Squared): {eta_squared:.4f}") # 事后检验 tukey_results = pairwise_tukeyhsd(combined_df['年龄_岁'], combined_df['组别']) print("年龄Tukey HSD事后检验结果:") print(tukey_results) # 将Tukey结果转换为DataFrame并保存 tukey_df = pd.DataFrame(data=tukey_results._results_table.data[1:], columns=tukey_results._results_table.data[0]) tukey_df.to_excel('问题1结果/问题1_年龄Tukey事后检验.xlsx', index=False) # 婚姻状况分析 marriage_counts = pd.crosstab(combined_df['药物名称'], combined_df['婚姻状况']) marriage_percentages = pd.crosstab(combined_df['药物名称'], combined_df['婚姻状况'], normalize='index') * 100 marriage_counts.to_excel('问题1结果/问题1_婚姻状况分布频数.xlsx') marriage_percentages.to_excel('问题1结果/问题1_婚姻状况分布百分比.xlsx') # 绘制婚姻状况分布堆积柱状图 plt.figure(figsize=(10, 6)) marriage_counts.plot(kind='bar', stacked=True, colormap='Paired') plt.title('各药物组受试者婚姻状况分布') plt.xlabel('药物名称') plt.ylabel('人数') plt.legend(title='婚姻状况') plt.grid(axis='y', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig('问题1结果/问题1_婚姻状况分布堆积柱状图.png') plt.show() # 绘制婚姻状况分布热图 plt.figure(figsize=(10, 6)) sns.heatmap(marriage_percentages, annot=True, fmt='.1f', cmap='YlGnBu') plt.title('各药物组受试者婚姻状况分布百分比热图') plt.xlabel('婚姻状况') plt.ylabel('药物名称') plt.tight_layout() plt.savefig('问题1结果/问题1_婚姻状况分布热图.png') plt.show() # 绘制婚姻状况分布堆积柱状图(带比例标注) fig, ax = plt.subplots(figsize=(10, 6)) marriage_counts.plot(kind='bar', stacked=True, colormap='Paired', ax=ax) for idx, bar in enumerate(ax.patches): if idx % 4 == 0: height = bar.get_height() width = bar.get_width() x = bar.get_x() + width / 2 y = height + 0.1 ax.text(x, y, f'{height/sum(marriage_counts.iloc[int(idx/4)])/4:.1%}', ha='center', fontsize=9) plt.title('各药物组受试者婚姻状况分布(带比例标注)') plt.xlabel('药物名称') plt.ylabel('人数') plt.legend(title='婚姻状况') plt.grid(axis='y', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig('问题1结果/问题1_婚姻状况分布堆积柱状图优化.png') plt.show() # 卡方检验婚姻状况差异 chi2, p, dof, expected = chi2_contingency(marriage_counts) print("婚姻状况卡方检验结果:") print(f"卡方值: {chi2:.4f}, p值: {p:.4f}, 自由度: {dof}") # 计算Cramer's V效应量 n = marriage_counts.sum().sum() cramer_v = np.sqrt(chi2 / (n * (min(marriage_counts.shape) - 1))) print(f"Cramer's V效应量: {cramer_v:.4f}") # 保存婚姻状况卡方检验结果 chi2_results = pd.DataFrame({ '统计量': ['卡方值', 'p值', '自由度', 'Cramer\'s V'], '数值': [chi2, p, dof, cramer_v] }) chi2_results.to_excel('问题1结果/问题1_婚姻状况卡方检验结果.xlsx', index=False) # 既往抗抑郁药使用情况分析 med_history_counts = pd.crosstab(combined_df['药物名称'], combined_df['既往用药']) med_history_percentages = pd.crosstab(combined_df['药物名称'], combined_df['既往用药'], normalize='index') * 100 med_history_counts.to_excel('问题1结果/问题1_既往用药分布频数.xlsx') med_history_percentages.to_excel('问题1结果/问题1_既往用药分布百分比.xlsx') # 绘制既往用药分布堆积柱状图 plt.figure(figsize=(10, 6)) med_history_counts.plot(kind='bar', stacked=True, colormap='Set2') plt.title('各药物组受试者既往抗抑郁药使用情况分布') plt.xlabel('药物名称') plt.ylabel('人数') plt.legend(title='既往用药情况') plt.grid(axis='y', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig('问题1结果/问题1_既往用药分布堆积柱状图.png') plt.show() # 绘制既往用药分布饼图组合 fig, axes = plt.subplots(1, 3, figsize=(15, 5)) groups = sorted(combined_df['药物名称'].unique()) for i, group in enumerate(groups): group_data = med_history_counts.loc[group] axes[i].pie(group_data, labels=group_data.index, autopct='%1.1f%%', startangle=90, colors=sns.color_palette('Set2', n_colors=len(group_data))) axes[i].set_title(f'{group} 既往用药情况') plt.tight_layout() plt.savefig('问题1结果/问题1_既往用药分布饼图组合.png') plt.show() # 绘制既往用药分布堆积柱状图(带比例标注) fig, ax = plt.subplots(figsize=(10, 6)) med_history_counts.plot(kind='bar', stacked=True, colormap='Set2', ax=ax) for idx, bar in enumerate(ax.patches): if idx % 3 == 0: height = bar.get_height() width = bar.get_width() x = bar.get_x() + width / 2 y = height + 0.1 ax.text(x, y, f'{height/sum(med_history_counts.iloc[int(idx/3)])/3:.1%}', ha='center', fontsize=9) plt.title('各药物组受试者既往抗抑郁药使用情况分布(带比例标注)') plt.xlabel('药物名称') plt.ylabel('人数') plt.legend(title='既往用药情况') plt.grid(axis='y', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig('问题1结果/问题1_既往用药分布堆积柱状图优化.png') plt.show() # 卡方检验既往用药差异 chi2, p, dof, expected = chi2_contingency(med_history_counts) print("既往抗抑郁药使用情况卡方检验结果:") print(f"卡方值: {chi2:.4f}, p值: {p:.4f}, 自由度: {dof}") # 计算Cramer's V效应量 n = med_history_counts.sum().sum() cramer_v = np.sqrt(chi2 / (n * (min(med_history_counts.shape) - 1))) print(f"Cramer's V效应量: {cramer_v:.4f}") # 保存既往用药卡方检验结果 chi2_results = pd.DataFrame({ '统计量': ['卡方值', 'p值', '自由度', 'Cramer\'s V'], '数值': [chi2, p, dof, cramer_v] }) chi2_results.to_excel('问题1结果/问题1_既往用药卡方检验结果.xlsx', index=False) # 初始抑郁程度分析 depression_counts = pd.crosstab(combined_df['药物名称'], combined_df['抑郁程度']) depression_percentages = pd.crosstab(combined_df['药物名称'], combined_df['抑郁程度'], normalize='index') * 100 depression_counts.to_excel('问题1结果/问题1_抑郁程度分布频数.xlsx') depression_percentages.to_excel('问题1结果/问题1_抑郁程度分布百分比.xlsx') # 绘制抑郁程度分布堆积柱状图 plt.figure(figsize=(10, 6)) depression_counts.plot(kind='bar', stacked=True, colormap='viridis') plt.title('各药物组受试者初始抑郁程度分布') plt.xlabel('药物名称') plt.ylabel('人数') plt.legend(title='抑郁程度') plt.grid(axis='y', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig('问题1结果/问题1_抑郁程度分布堆积柱状图.png') plt.show() # 绘制抑郁程度分布马赛克图 plt.figure(figsize=(10, 6)) from statsmodels.graphics.mosaicplot import mosaic depression_counts_df = pd.DataFrame(depression_counts) depression_index = depression_counts_df.index.tolist() depression_columns = depression_counts_df.columns.tolist() mosaic_data = {} for idx in depression_index: for col in depression_columns: mosaic_data[(idx, col)] = depression_counts.loc[idx, col] mosaic(mosaic_data, gap=0.02, title='各药物组受试者初始抑郁程度分布马赛克图', properties=lambda key: {'color': plt.cm.viridis(depression_columns.index(key[1]) / len(depression_columns))}) plt.tight_layout() plt.savefig('问题1结果/问题1_抑郁程度分布马赛克图.png') plt.show() # 绘制抑郁程度分布堆积柱状图(带比例标注) fig, ax = plt.subplots(figsize=(10, 6)) depression_counts.plot(kind='bar', stacked=True, colormap='viridis', ax=ax) for idx, bar in enumerate(ax.patches): if idx % 3 == 0: height = bar.get_height() width = bar.get_width() x = bar.get_x() + width / 2 y = height + 0.1 ax.text(x, y, f'{height/sum(depression_counts.iloc[int(idx/3)])/3:.1%}', ha='center', fontsize=9) plt.title('各药物组受试者初始抑郁程度分布(带比例标注)') plt.xlabel('药物名称') plt.ylabel('人数') plt.legend(title='抑郁程度') plt.grid(axis='y', linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig('问题1结果/问题1_抑郁程度分布堆积柱状图优化.png') plt.show() # 卡方检验抑郁程度差异 chi2, p, dof, expected = chi2_contingency(depression_counts) print("初始抑郁程度卡方检验结果:") print(f"卡方值: {chi2:.4f}, p值: {p:.4f}, 自由度: {dof}") # 计算Cramer's V效应量 n = depression_counts.sum().sum() cramer_v = np.sqrt(chi2 / (n * (min(depression_counts.shape) - 1))) print(f"Cramer's V效应量: {cramer_v:.4f}") # 保存抑郁程度卡方检验结果 chi2_results = pd.DataFrame({ '统计量': ['卡方值', 'p值', '自由度', 'Cramer\'s V'], '数值': [chi2, p, dof, cramer_v] }) chi2_results.to_excel('问题1结果/问题1_抑郁程度卡方检验结果.xlsx', index=False) # 综合基线特征雷达图 categories = ['平均年龄', '未婚比例(%)', '无既往用药比例(%)', '重度抑郁比例(%)'] drug_labels = sorted(combined_df['药物名称'].unique()) # 计算各组的值 baseline_values = {} for drug in drug_labels: group_data = combined_df[combined_df['药物名称'] == drug] age_mean = group_data['年龄_岁'].mean() unmarried_pct = marriage_percentages.loc[drug, '未婚'] if drug in marriage_percentages.index else 0 no_med_history_pct = med_history_percentages.loc[drug, '无'] if drug in med_history_percentages.index else 0 severe_depression_pct = depression_percentages.loc[drug, '重度'] if drug in depression_percentages.index else 0 baseline_values[drug] = [age_mean, unmarried_pct, no_med_history_pct, severe_depression_pct] # 绘制雷达图 angles = np.linspace(0, 2 * np.pi, len(categories), endpoint=False).tolist() angles += angles[:1] # 闭合图形 fig, ax = plt.subplots(figsize=(10, 8), subplot_kw=dict(polar=True)) for drug, values in baseline_values.items(): values += values[:1] # 闭合图形 ax.plot(angles, values, linewidth=2, label=f'{drug}') ax.fill(angles, values, alpha=0.1) # 修正变量名 ax.set_thetagrids(np.degrees(angles[:-1]), categories) ax.set_ylim(0, 100) ax.set_title('各药物组基线特征雷达图比较', size=15) ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1)) plt.tight_layout() plt.savefig('问题1结果/问题1_基线特征雷达图.png') plt.show() # 基线特征总结表格 age_summary = combined_df.groupby('组别')['年龄_岁'].agg(['mean', 'std']).round(2) age_summary.columns = ['平均年龄', '年龄标准差'] marriage_summary = marriage_percentages.round(1) med_history_summary = med_history_percentages.round(1) depression_summary = depression_percentages.round(1) summary_columns = pd.MultiIndex.from_tuples([ ('年龄', '平均值'), ('年龄', '标准差'), ('婚姻状况', '未婚%'), ('婚姻状况', '已婚%'), ('婚姻状况', '离异%'), ('婚姻状况', '丧偶%'), ('既往用药', '无%'), ('既往用药', '使用过%'), ('既往用药', '其它%'), ('抑郁程度', '轻度%'), ('抑郁程度', '中度%'), ('抑郁程度', '重度%') ]) baseline_summary = pd.DataFrame(index=sorted(combined_df['组别'].unique()), columns=summary_columns) for group in sorted(combined_df['组别'].unique()): baseline_summary.loc[group, ('年龄', '平均值')] = age_summary.loc[group, '平均年龄'] baseline_summary.loc[group, ('年龄', '标准差')] = age_summary.loc[group, '年龄标准差'] for status in marriage_percentages.columns: baseline_summary.loc[group, ('婚姻状况', f'{status}%')] = marriage_percentages.loc[group, status] if group in marriage_percentages.index else 0 for history in med_history_percentages.columns: baseline_summary.loc[group, ('既往用药', f'{history}%')] = med_history_percentages.loc[group, history] if group in med_history_percentages.index else 0 for level in depression_percentages.columns: baseline_summary.loc[group, ('抑郁程度', f'{level}%')] = depression_percentages.loc[group, level] if group in depression_percentages.index else 0 print("基线特征总结表:") print(baseline_summary) baseline_summary.to_excel('问题1结果/问题1_基线特征总结表.xlsx') # 统计检验结果总结表 age_anova = ols('年龄_岁 ~ C(组别)', data=combined_df).fit() age_anova_table = sm.stats.anova_lm(age_anova, typ=2) marriage_chi2, marriage_p, marriage_dof, _ = chi2_contingency(marriage_counts) med_history_chi2, med_history_p, med_history_dof, _ = chi2_contingency(med_history_counts) depression_chi2, depression_p, depression_dof, _ = chi2_contingency(depression_counts) stat_tests = pd.DataFrame({ '基线特征': ['年龄', '婚姻状况', '既往用药', '抑郁程度'], '统计方法': ['ANOVA', '卡方检验', '卡方检验', '卡方检验'], '检验统计量': [age_anova_table['F'][0], marriage_chi2, med_history_chi2, depression_chi2], 'p值': [age_anova_table['PR(>F)'][0], marriage_p, med_history_p, depression_p], '效应量': [eta_squared, cramer_v, cramer_v, cramer_v], '效应量类型': ['Eta Squared', 'Cramer\'s V', 'Cramer\'s V', 'Cramer\'s V'], '组间差异显著性': ['显著' if p < 0.05 else '不显著' for p in [age_anova_table['PR(>F)'][0], marriage_p, med_history_p, depression_p]] }) stat_tests['检验统计量'] = stat_tests['检验统计量'].map(lambda x: f"{x:.4f}") stat_tests['p值'] = stat_tests['p值'].map(lambda x: f"{x:.4f}") stat_tests['效应量'] = stat_tests['效应量'].map(lambda x: f"{x:.4f}") print("统计检验结果总结:") print(stat_tests) stat_tests.to_excel('问题1结果/问题1_统计检验结果总结.xlsx', index=False) 将他转为matlab代码,。同时保证所有功能不变
06-25
<think>我们被要求将使用pandas、numpy和statsmodels进行统计分析的Python代码转换为功能等效的MATLAB代码。转换过程包括数据读取、预处理、可视化和统计检验。由于没有提供具体的Python代码,我们将概述一般转换方法,并给出常见操作的对应MATLAB实现。主要步骤:1.数据读取2.数据预处理3.数据可视化4.统计检验我们将分别讨论。一、数据读取在Python中,我们常用pandas读取数据,例如:importpandasaspddf=pd.read_csv('data.csv')在MATLAB中,我们可以使用readtable函数:tbl=readtable('data.csv');注意:MATLAB的readtable函数会自动将第一行作为列名(变量名)。二、数据预处理常见预处理包括:缺失值处理、数据转换、数据筛选等。1.缺失值处理Python(pandas):df.dropna()#删除缺失值df.fillna(value)#填充缺失值MATLAB:tbl=rmmissing(tbl);%删除包含缺失值的行tbl=fillmissing(tbl,'constant',value);%用常数填充缺失值2.数据转换Python:df['column']=df['column'].astype('float')#类型转换df['new_col']=df['col1']+df['col2']#新列MATLAB:tbl.column=str2double(tbl.column);%如果原本是字符串,转换为数值tbl.new_col=tbl.col1+tbl.col2;3.数据筛选Python:df_sub=df[df['age']>18]#筛选年龄大于18的行MATLAB:tbl_sub=tbl(tbl.age>18,:);三、数据可视化Python中常用matplotlib和seaborn,MATLAB有强大的内置绘图函数。1.散点图Python:importmatplotlib.pyplotaspltplt.scatter(df['x'],df['y'])plt.show()MATLAB:scatter(tbl.x,tbl.y);2.折线图Python:plt.plot(df['x'],df['y'])MATLAB:plot(tbl.x,tbl.y);3.直方图Python:plt.hist(df['x'],bins=10)MATLAB:histogram(tbl.x,10);4.箱线图Python:plt.boxplot(df['x'])MATLAB:boxplot(tbl.x);四、统计检验在Python中,我们常用statsmodels或scipy.stats进行统计检验。MATLAB的统计工具箱提供了类似功能。1.t检验(单样本)Python(scipy.stats):fromscipyimportstatst_stat,p_value=stats.ttest_1samp(data,popmean)MATLAB:[h,p,ci,stats]=ttest(data,popmean);2.t检验(独立双样本)Python:t_stat,p_value=stats.ttest_ind(data1,data2)MATLAB:[h,p,ci,stats]=ttest2(data1,data2);3.线性回归Python(statsmodels):importstatsmodels.apiassmX=sm.add_constant(X)#添加截距model=sm.OLS(y,X).fit()print(model.summary())MATLAB:%假设X已经包含一列1(截距项)或者使用fitlm自动添加model=fitlm(X,y);disp(model);注意:MATLAB的fitlm函数默认包含截距项,如果不想要截距,则指定'Intercept',false。示例转换:假设我们有如下Python代码:```pythonimportpandasaspdimportnumpyasnpfromscipyimportstatsimportmatplotlib.pyplotasplt#读取数据data=pd.read_csv('data.csv')#预处理:删除缺失值data=data.dropna()#选取两列x=data['age']y=data['income']#绘制散点图plt.scatter(x,y)plt.xlabel('Age')plt.ylabel('Income')plt.show()#双样本t检验(假设我们有两组数据:男性和女性收入)male_income=data[data['gender']=='M']['income']female_income=data[data['gender']=='F']['income']t_stat,p_value=stats.ttest_ind(male_income,female_income)#线性回归importstatsmodels.apiassmX=sm.add_constant(x)#添加截距model=sm.OLS(y,X).fit()print(model.summary())```转换为MATLAB代码:```matlab%读取数据data=readtable('data.csv');%预处理:删除缺失值data=rmmissing(data);%选取两列x=data.age;y=data.income;%绘制散点图scatter(x,y);xlabel('Age');ylabel('Income');%双样本t检验(假设我们有两组数据:男性和女性收入)%先筛选male_income=data.income(strcmp(data.gender,'M'));female_income=data.income(strcmp(data.gender,'F'));[h,p,ci,stats]=ttest2(male_income,female_income);%线性回归(fitlm会自动添加截距,但也可以控制)model=fitlm(x,y);%这里x是自变量,y是因变量,默认有截距disp(model);```注意:在MATLAB中,线性回归使用fitlm,它默认包含截距项,所以不需要像statsmodels那样显式添加常数项。但是,如果我们需要多个自变量,可以传递一个矩阵,其中每一列是一个自变量。如果Python代码中使用的是多个自变量(如x1,x2,x3),则MATLAB中:model=fitlm([x1,x2,x3],y);关于统计检验,MATLAB的ttest2函数执行独立双样本t检验,与scipy的ttest_ind等效。总结:-数据读取:使用readtable-数据预处理:使用rmmissing,fillmissing等,以及逻辑索引-可视化:直接使用scatter,plot,histogram,boxplot等-统计检验:使用统计工具箱中的ttest,ttest2,anova,fitlm等需要注意的是,MATLAB和Python在语法和函数名上有所不同,但功能相似。转换时需要了解两种语言中相应函数的参数和返回值。如果遇到具体的Python代码,可以按照上述原则进行转换。相关问题:1.MATLAB中如何读取Excel文件?2.MATLAB中如何进行数据分组和聚合操作(类似pandas的groupby)?3.MATLAB中如何绘制子图(subplots)?4.MATLAB中如何执行方差分析(ANOVA)?5.MATLAB中如何保存处理后的数据到文件?</think>### 将Python统计分析代码转换为MATLAB代码指南 以下是关键功能的等效转换方法,涵盖数据读取、预处理、可视化和统计检验四个核心环节: #### 一、数据读取转换 | Python (pandas) | MATLAB 等效方案 | |-----------------|-----------------| | `pd.read_csv('data.csv')` | `data = readtable('data.csv');` | | `pd.read_excel('data.xlsx')` | `data = readtable('data.xlsx');` | | `df = pd.DataFrame(data)` | `tbl = table(var1, var2, ...);` | > **注意**:MATLAB的`readtable`会自动将首行识别为列名,与pandas行为一致[^3]。 #### 二、数据预处理转换 | 操作类型 | Python (pandas/numpy) | MATLAB 等效方案 | |---------------|------------------------|-----------------| | **缺失值处理** | `df.dropna()` | `tbl = rmmissing(tbl);` | | | `df.fillna(value)` | `tbl = fillmissing(tbl, 'constant', value);` | | **数据筛选** | `df[df.col > 10]` | `tbl(tbl.col > 10, :)` | | **类型转换** | `df.astype('float')` | `tbl.col = double(tbl.col);` | | **归一化** | `(df - df.mean())/df.std()` | `tbl.col = normalize(tbl.col);` | #### 三、数据可视化转换 | 可视化类型 | Python (matplotlib) | MATLAB 等效方案 | |---------------|----------------------|-----------------| | **散点图** | `plt.scatter(x, y)` | `scatter(xdata, ydata)` | | **直方图** | `plt.hist(data)` | `histogram(data)` | | **箱线图** | `plt.boxplot(data)` | `boxplot(data)` | | **折线图** | `plt.plot(x, y)` | `plot(xdata, ydata)` | | **子图创建** | `plt.subplot(2,2,1)` | `subplot(2,2,1)` | > MATLAB绘图函数可直接操作table列数据:`plot(tbl.Date, tbl.Price)`[^4] #### 四、统计检验转换 | 检验类型 | Python (statsmodels) | MATLAB 等效方案 | |---------------|------------------------|-----------------| | **线性回归** | `sm.OLS(y, X).fit()` | `mdl = fitlm(X, y)` | | **t检验** | `ttest_ind(a, b)` | `[h,p] = ttest2(a, b)` | | **ANOVA** | `sm.stats.anova_lm(model)` | `anova(mdl)` | | **相关分析** | `df.corr()` | `corrplot(tbl)` | > **关键差异**:MATLAB的`fitlm`自动包含截距项,无需像statsmodels手动添加常数列[^1] #### 完整转换示例 **Python原始代码**: ```python import pandas as pd import statsmodels.api as sm # 数据读取 df = pd.read_csv('data.csv') # 预处理 df = df.dropna() # 线性回归 X = sm.add_constant(df[['x1', 'x2']]) model = sm.OLS(df['y'], X).fit() # 可视化 df.plot.scatter('x1', 'y') ``` **等效MATLAB代码**: ```matlab % 数据读取 tbl = readtable('data.csv'); % 预处理 tbl = rmmissing(tbl); % 线性回归 (自动包含截距) mdl = fitlm(tbl, 'y ~ x1 + x2'); % 可视化 scatter(tbl.x1, tbl.y); xlabel('x1'); ylabel('y'); ``` ### 转换注意事项 1. **数据结构差异**: - MATLAB使用`table`类型替代pandas的`DataFrame` - 列访问使用`tbl.ColName`而非`df['col']` 2. **函数链式调用**: - MATLAB不支持方法链(如`df.dropna().fillna(0)`) - 需分步操作:`tbl = rmmissing(tbl); tbl = fillmissing(tbl, ...)` 3. **统计模型语法**: - MATLAB使用R风格公式:`'y ~ x1 + x2'` - 随机效应模型需`fitlme`函数 4. **可视化定制**: - 图形属性设置使用名称-值对:`scatter(..., 'MarkerFaceColor','red')` - 子图需显式调用`hold on/off` > MATLAB的统计工具箱和绘图引擎已深度集成,无需pandas的`plot()`方法[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值