浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理...

本文深入探讨了范德蒙德方阵的逆矩阵计算,及其与拉格朗日插值的关系。同时,解释了快速傅里叶变换(FFT)中IDFT的原理,通过分析证明了IDFT矩阵的一种等效形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理

标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值


只要稍微看过一点线性代数的应该都知道范德蒙德行列式。
\[V(x_0,x_1,\cdots ,x_{n-1})=\begin{bmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{0}^2}&{x_{1}^2}&{\cdots}&{x_{n-1}^2}\\ {\vdots}&{\vdots}&{}&{\vdots}\\ {x_{0}^{n-1}}&{x_{1}^{n-1}}&{\cdots}&{x_{n-1}^{n-1}}\\ \end{bmatrix} \]
而范德蒙德行列式由于其本身的特殊性,具有通项公式:
\[V(x_0,x_1,\cdots ,x_{n-1})=\prod _{n > i > j \geq 0}(x _{i}-x _{j})\]

我们同样可以把行列式中的项写到矩阵中来,即范德蒙德方阵
\[V=\begin{pmatrix} {1}&{1}&{\cdots}&{1}\\ {x_{0}}&{x_{1}}&{\cdots}&{x_{n-1}}\\ {x_{0}^2}&{x_{1}^2}&{\cdots}&{x_{n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值