《统计学习方法》笔记七(1) 支持向量机——线性可分支持向量机

本文深入探讨了支持向量机的学习过程,特别是在特征空间中如何实现线性可分的支持向量机。从函数间隔与几何间隔的概念出发,详细解释了间隔最大化的数学原理,并介绍了如何通过拉格朗日对偶性将复杂问题简化,以及如何引入核函数解决非线性分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本系列笔记内容参考来源为李航《统计学习方法》

知识概要

 线性可分支持向量机与硬间隔最大化

支持向量机的学习是在特征空间进行的。

定义

函数间隔与几何间隔

间隔最大化

用函数间隔可改写为

最大化1/||ω||和最小化1/2(||ω||)2等价,并取γ=1,得

支持向量和间隔边界

对偶算法

应用拉格朗日对偶性,通过求解对偶问题得到原始问题的最优解,一是因为对偶问题往往更容易求解,二是自然引入核函数,进而推广到非线性分类的问题。

推导过程参考7.1.4节,原始问题的对偶形式如下

 

转载于:https://www.cnblogs.com/wwf828/p/9910696.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值