乘法逆元--费马小定理

(我实在是太...(才明白这个qwq

 

一、前置知识

定义1:给定正整数m,若用m除两个整数a和b所得的余数相同,称a和b对模m同余,记作a≡b(mod m),并称该式子为同余式;否则称a和b对模m不同余

 

二、乘法逆元

若整数b,p互质,并且b|a,则存在一个整数x,使得  (a/b)≡ a * x (mod p)

称x为b的模p乘法逆元,记为  b-1(mod p)

因为  a / b ≡ a * b-1 ≡ (a / b) * b * b-1 (mod p)

所以  b * b-1 ≡ 1(mod p)

如果p是质数,并且b < p

根据费马小定理

bp - 1 ≡ 1(mod p),即  b * bp - 2 ≡ 1 (mod p)

因此,当模数p为质数时,bp - 2即为b的乘法逆元

如果只保证b,p互质

那么乘法逆元可以通过求解同余方程  b * x ≡ 1(mod p)  来得到

 

转载于:https://www.cnblogs.com/darlingroot/p/10963017.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值