pick定理的应用

皮克定理为我们解答了关于多边形面积和格点数的一些内在关系,具体如下:

(前提是顶点坐标都是整数点或是正方形格点的简单多边形)我们假设简单多边形A的面积是S,A内部的格点数为kin,A边上格点数数目为kon,则它们之间存在如下关系:S=kin+kon/2-1。

wikipedia上的详细证明

PKU 2954就是皮克定理的简单应用。

代码如下:


 
#include"stdio.h"
#include"math.h"
#define abs(x) ((x)>0?(x):-(x))
struct point{int x,y;};
int gcd(int a,int b)
{
	return b?gcd(b,a%b):a;
}
int on(point *p)//计算边上的格点数
{
	int i,ret=0;
	for(i=0;i<3;i++)
		ret+=gcd(abs(p[i].x-p[(i+1)%3].x),abs(p[i].y-p[(i+1)%3].y));
	return ret;
}
int in(point *p)//计算内部的格点数
{
	int i,ret=0;
	for(i=0;i<3;i++)
		ret+=p[(i+1)%3].y*(p[i].x-p[(i+2)%3].x);
	return (abs(ret)-on(p))/2+1;
}
int main()
{
	point p[3];
	while(scanf("%d%d%d%d%d%d",&p[0].x,&p[0].y,&p[1].x,&p[1].y,&p[2].x,&p[2].y))
	{
		if(p[0].x==0&&p[0].y==0&&p[1].x==0&&p[1].y==0&&p[2].x==0&&p[2].y==0)
			break;
		int ans=in(p);
		printf("%d\n",ans);
	}
	return 0;
}

转载于:https://www.cnblogs.com/acsmile/archive/2011/04/30/2033549.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值