Hearthstone AI

本文探讨了如何使用机器学习技术来破解炉石传说游戏,包括Monte Carlo Tree Search实验和Hearthstone AI竞赛的详细信息。介绍了组织者Alexander Dockhorn和Sanaz Mostaghim的工作,以及基于Sabberstone框架的比赛背景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

search keyword `machine learning hearthstone` with google

I am a legend: Hacking Hearthstone with machine-learning Defcon talk wrap-up

https://www.youtube.com/watch?v=ao3P5QCrF_M

 

paper

链接: https://pan.baidu.com/s/1IavjqQbI3W6Hj6C2h4sieg 提取码: 3up4 

MCTSexperimentsHS.zip 出自  Monte Carlo Tree Search experiments in Hearthstone

 

https://github.com/ADockhorn/HearthstoneAICompetition

https://dockhorn.antares.uberspace.de/wordpress/

Organisers

The Hearthstone-AI Competition is being organised by:

Have questions or suggestions? Feel free to contact us via our Q&A Forum or directly sent a mail to the competition admin.

 

We would like to thank the developers of the Sabberstone Framework on which our competition is based on. Special thanks go out to darkfriend77 who is the current organizer of the Sabberstone github.

 

转载于:https://www.cnblogs.com/chucklu/p/11382229.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值