装备购买(线性基)

题目链接

https://www.acwing.com/problem/content/description/211/

算法:先贪心,然后高斯消元算出基底的个数

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=505;
#define PII pair<int,int>
const int INF=2e9; 
const int mod=1e9+7;
ll power(ll a,ll b)
{
    ll ans=1;
    for(;b;b>>=1)
    {
        if(b&1)
            ans=ans*a%mod;
        a=a*a%mod;
    }
    return ans;
}
ll inv(ll x)
{
    return power(x,mod-2);
}
struct hp{
    ll a[N];
    int val;
};
hp ma[N];
int b[N],n,m,cnt,ans;
int cmp(const hp &a,const hp &b)
{
    return a.val<b.val;
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            cin>>ma[i].a[j];
            ma[i].a[j]%mod;
        }
    }
    for(int i=1;i<=n;i++)
    {
        cin>>ma[i].val;
    }
    sort(ma+1,ma+n+1,cmp);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(ma[i].a[j])
            {
                if(!b[j])
                {
                    b[j]=i;
                    ++cnt;
                    ans+=ma[i].val;
                    break;
                }
                else
                {
                    ll t=ma[i].a[j]*inv(ma[b[j]].a[j])%mod;
                    for(int k=j;k<=n;k++)
                    {
                        ma[i].a[k]=((ma[i].a[k]-ma[b[j]].a[k]*t%mod)%mod+mod)%mod;
                    }
                }
            }
        }
    }
    cout<<cnt<<" "<<ans<<"\n";
    return 0;
 } 

 

转载于:https://www.cnblogs.com/hh13579/p/11630599.html

内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值