- 博客(718)
- 资源 (73)
- 收藏
- 关注
原创 Cygwin环境下LAPACK库的安装与C++17项目配置指南
LAPACK(Linear Algebra Package)是用于数值线性代数运算的高性能库,提供了解决线性方程组、线性最小二乘问题、特征值问题和奇异值分解等功能的例程。它是科学计算和工程应用中不可或缺的基础库。
2025-09-15 18:52:49
357
原创 泛函Φ(u)驻点的方程与边界条件 / 求给定泛函驻点满足的方程及边界条件
的驻点,需要求解其欧拉-拉格朗日方程并推导自然边界条件。未被指定,因此需要从泛函的变分中推导自然边界条件。,并利用积分 by parts,得到在。接下来处理边界条件。的驻点所满足的方程和边界条件,其中。
2025-09-11 15:57:37
890
原创 最小曲面问题的欧拉-拉格朗日方程 / 曲面极值问题的变分法推导
(a) 写出最小面积曲面的欧拉-拉格朗日偏微分方程(边界条件为。写出最小能量曲面的欧拉-拉格朗日偏微分方程。这是最小能量曲面的欧拉-拉格朗日 PDE。问题 4. 曲面的面积为。
2025-09-11 12:25:11
734
原创 变分法问题:极小曲面欧拉-拉格朗日方程与二维泛函驻点的推导
此解对应悬链线,即最小旋转曲面(catenoid)。的驻点所满足的方程和边界条件,其中。写出欧拉-拉格朗日方程并求解它。:如果曲面是一个旋转曲面。对于旋转曲面的表面积泛函。为边界单位外法向量。
2025-09-11 09:09:35
300
原创 求解带线积分的泛函极值问题的欧拉方程及自然/狄利克雷边界条件
uxx−uxyuyy0在D内u_{xx} - u_{xy} + u_{yy} = 0 \quad \text{在} \quad D \text{ 内}uxx−uxyuyy0在D内u∣y00u∣y10u∣x202ux−uy2gy在x0上。
2025-09-11 07:38:39
284
原创 悬链线问题的变分法求解:固定长度下的最小势能与边界条件分析
从而得到满足边界条件和长度约束的解。解的具体形式取决于参数。:一根重型柔性但不可伸长的线(链)的长度和能量分别为。方程 (5)、(6) 和 (7) 共同决定了常数。,使用拉格朗日乘子法。固定的情况下最小化能量。固定的情况下最小化能量。
2025-09-11 07:05:55
406
原创 变分法应用:求解固定边界条件下从 (0,0) 到 (a,−h) 的最短时间滑梯曲线
部分 (b) 要求找到最快滑梯的解(无长度约束),即最小化时间。为简化,在求解时,可定义。这是最速降线的微分方程。如果滑梯的形状由函数。是垂直坐标(向上为正),从。部分 (a) 要求最小化时间。问题2:我们需要构建从点。”可能为笔误,应为时间。注:在时间积分中,项。此解表示一条旋轮线。
2025-09-10 07:22:59
655
原创 球对称条件下波动方程与热方程的求解——基于球坐标与傅里叶级数展开的系列边值
问题4. 在以下问题中使用球坐标,注意解必须是球对称的:u=u(r,t) u = u(r,t) u=u(r,t)(解释为什么)。将解表示为关于 r r r 的相应傅里叶级数。并使用等式 rurr+2ur=(ru)rr. ru_{rr} + 2u_r = (ru)_{rr}. rurr+2ur=(ru)rr.(a){utt−Δu=0,u∣r=1=0,u∣t=0=0,ut∣t=0=sin(πr)\begin{cases}u_{tt} - \Delta u = 0, \\u|_{r=1} = 0,
2025-09-08 17:31:17
320
原创 球坐标系中拉普拉斯方程的分离变量与解的结构
这些取值确保了解在球坐标下的物理合理性(如周期性边界条件和解的有限性)。问题 1. (a) 用球坐标写出拉普拉斯方程。是分离常数(通常为非负整数)。是极角(从 z 轴开始),
2025-09-08 17:07:57
576
原创 球坐标系下调和函数的构造:多项式边界条件的求解方法
的个数较多,我将详细解答部分 (a)、(b)、©,并提供其他部分的解答思路和结果。对于所有部分,球的半径。为齐次调和多项式的和,并代入球坐标。对于其他部分,使用相同方法:设。具有某些旋转对称性,那么。表示为齐次调和多项式的和。问题3. (i) 求解。
2025-09-08 16:57:56
1064
原创 关联勒让德方程在极角Φ下的多项式解(l = 0, 1, 2, 3 及不同 m 值情形)
这些解均满足关联勒让德方程,并表示为。问题2. 对于Φ的方程,找到形式为。该问题涉及关联勒让德方程的解,其中。的多项式形式,次数为。
2025-09-06 13:21:07
428
原创 球坐标系下调和函数的构造:多项式边界条件的求解方法
的个数较多,我将详细解答部分 (a)、(b)、©,并提供其他部分的解答思路和结果。对于所有部分,球的半径。为齐次调和多项式的和,并代入球坐标。对于其他部分,使用相同方法:设。具有某些旋转对称性,那么。表示为齐次调和多项式的和。问题3. (i) 求解。
2025-09-05 18:40:43
878
原创 函数 u(x, y) = x² - y² 的调和性及在区域 D = {(x, y) : (x - 2)² + y² ≤ 1} 上的最大最小值
是调和函数,极值只在边界上达到,因此在整个区域。上的最大值和最小值,以及达到这些值的点。Alternatively, 从边界方程。是调和函数,根据最大模原理,在闭区域。上的最大值和最小值一定在边界。是二次函数,开口向上,顶点在。的最小值为 1,最大值为 9。是否为调和函数,并求在区域。
2025-09-05 11:15:02
848
原创 调和函数 u(x, y) = xy 的判定及其在圆域 D = {(x, y) : (x - 1)² + y² ≤ 1} 上的最大值与最小值
上的最大值和最小值,以及取得这些值的点。是调和函数,根据最大模原理,在闭区域。上的最大值和最小值必须在边界。是否为调和函数,并求在区域。是调和函数,这些也是区域。上的全局最大值和最小值。问题 14. 检查函数。
2025-09-05 11:00:10
858
原创 如何让MATLAB的M代码文件脱离MATLAB软件环境运行
MATLAB作为科学计算和算法开发的顶级工具,其强大的功能和丰富的工具箱深受工程师和科研人员的喜爱。然而,其运行依赖于昂贵的MATLAB软件环境,这在软件部署、分发和集成时带来了极大的限制。为了让开发成果能更广泛、更自由地应用,将M代码脱离MATLAB环境运行成为了一个常见且重要的需求。本文将详细论述实现这一目标的几种主流方法,包括代码转换、编译封装以及自主研发环境。
2025-09-05 06:36:55
929
原创 调和函数 u(x,y) = xy 在圆域 (x-2)² + y² ≤ 1 上的最大值与最小值
根据有界闭区域上连续函数的性质,函数。上一定能取得最大值和最小值。以及取得这些最值的点,其中。调和函数满足拉普拉斯方程。
2025-09-03 07:15:20
438
原创 矩阵运算的广泛性和MATLAB相关检查函数
在这个例子中,我们定义了两个复数矩阵A和B,并使用ishermitian和issymmetric函数来检查它们的属性。结果显示,矩阵A是对称的但不是Hermitian的,而矩阵B则是Hermitian的但不是对称的。在进行矩阵计算之前,了解矩阵的属性是非常重要的。这些函数不仅能够帮助我们选择合适的计算方法,还能够在计算开始前验证矩阵是否满足预期的属性。MATLAB的线性代数函数不仅适用于实数矩阵,也同样适用于复数矩阵。在MATLAB中,我们用AT表示矩阵A的转置,用A∗表示矩阵A的共轭转置。
2025-09-03 07:13:07
369
原创 调和函数的验证与极值求解:区域 D = {(x,y) : |y| ≤ x} 上的最值问题
是一个调和函数,并求出在区域。调和函数满足拉普拉斯方程。,以及取得这些最值的点。
2025-08-29 07:35:09
810
原创 重塑可观测性成本:解析Coralogix的智能成本优化之道
在云原生与微服务架构成为主流的今天,可观测性(Observability)已成为企业确保系统稳定、快速排障的必需品。然而,随着数据量的爆炸式增长,传统的可观测性平台所带来的成本也在急剧攀升。企业常常陷入两难境地:为了满足运维需求,不得不支付高昂的数据索引和存储费用;而为了控制成本,又可能被迫丢弃有价值的数据,从而埋下未知的风险隐患。Coralogix的出现,正是为了破解这一困境。它并非通过简单地限制数据摄入来降低成本,而是通过一系列创新的架构设计和技术手段,构建了一套。
2025-08-28 23:53:49
497
原创 使用Python自动化VS 2022的C++项目构建流程
下载安装Developer Command Prompt for VS 2022的C/C++构建工具,然后用Python输出一个Hello World的C++代码文件,并用cl.exe编译运行,以及用Python生成一个C++控制台解决方案,并用msbuild编译并运行解决方案,配置为Debug x64,还有用CMake生成构建目录,以Visual Studio 2022生成器为例,并用cmake命令行编译项目,然后用code命令行,在VS Code中打开项目的全过程。
2025-08-27 15:54:28
919
原创 拉普拉斯方程格林函数构造方法
这些格林函数是通过反射法构造的,确保了在边界上满足相应的狄利克雷或诺伊曼条件。反射法通过在与源点对称的点放置镜像电荷来满足边界条件。正如我们所知,在整个平面和整个空间中,它们就是势函数。,满足边界条件(详细计算见推导)。,满足边界条件(详细计算见推导)。拉普拉斯方程的格林函数满足。(a) 狄利克雷问题。
2025-08-27 09:13:36
417
原创 下载并安装Cygwin以及在其上安装apt-cyg、gcc、make和cmake
【代码】Cygwin上安装apt-cyg、gcc、make和cmake。
2025-08-26 20:49:27
299
原创 Cygwin安装Eigen库并编译C++代码
编写一段Shell脚本,可以复制粘贴到Cygwin终端窗口里安装Eigen库并用GCC编译调用Eigen库的C++代码并运行,支持检查配置信息(文件目录和环境变量)和重复运行。下载文件并解压到/usr/local/,然后删除下载文件。
2025-08-26 18:10:45
330
原创 Cygwin安装spdlog并编译C++代码
编写一段Shell脚本,可以复制粘贴到Cygwin终端窗口里安装spdlog库并用GCC编译调用spdlog库的C++代码,支持检查配置信息(文件目录和环境变量)和重复运行。
2025-08-26 18:06:22
373
原创 Cygwin安装MATIO库并编译C++代码
编写一段Shell脚本,可以复制粘贴到Cygwin终端窗口里安装MATIO库并用GCC编译调用MATIO库的C++代码,支持检查配置信息(文件目录和环境变量)和重复运行。
2025-08-26 18:01:32
674
原创 降维法推导泊松方程稳态解
假设Kirchhoff公式(9.1.12)是三维波动方程的标准解公式。从Kirchhoff公式(9.1.12)开始,并为n=3推导出(7.2.10),其中。通过将波动方程的解对时间积分,并利用Kirchhoff公式 with初始条件。问题要求从波动方程的Kirchhoff公式出发,通过降维法推导三维泊松方程。此即公式(7)所示。我们希望通过波动方程的解来构造稳态解。因此,从Kirchhoff公式通过降维法推导出了此结果。,得到了泊松方程的解及其格林函数。的稳态解,而不是非稳态解。此即公式(9.1.12)。
2025-08-26 07:34:14
855
原创 验证调和函数并求其在特定无界区域上的最大最小值
是调和函数,在无界区域上,需使用提示考虑截断区域。的边界上取得最大值和最小值。上的最大值和最小值,以及达到这些值的点。是调和函数,因为它满足拉普拉斯方程。因此,内部点无法超越边界上的极值。是调和函数,并求在区域。是一个无界闭集,其中。不能达到 ±1 除非。
2025-08-24 12:55:17
261
原创 数学分析中的调和函数极值原理
问题 4. (a) 利用极大值原理的证明,证明次调和函数的极大值原理和超调和函数的极小值原理。超调和函数的极小值原理(部分 (a))表明,极小值在边界上达到,因此在整个。(b) 证明次调和函数的极小值原理和超调和函数的极大值原理不成立(提示:用。超调和函数的极大值原理不成立:同样在单位球内,定义径向函数。中的调和函数、次调和函数和超调和函数,且在边界上相等。因此极小值在内部达到,违反极小值原理。因此极大值在内部达到,违反极大值原理。同样由超调和函数的极小值原理,在整个。的内部点达到极小值,除非。
2025-08-24 08:00:23
788
原创 C++进程监视器与自动启动程序
写一段Mingw64上编译和Windows 11上运行的GCC的C++程序,获取正在运行的进程窗口的标题,通过字符串来精确匹配,或者用通配符或正则表达式,获得一个进程列表,当这个进程列表中的所有进程都退出的时候,就自动调用一个另外的exe程序或bat批处理脚本,用ini配置文件来记录配置信息,实现异常处理和日志文件写入,日志包含发生错误和运行exe或bat文件的时间戳,运行状态,运行的文件名和出现错误时的函数调用堆栈。这个程序提供了完整的进程监视和自动执行功能,并包含了详细的日志记录和错误处理机制。
2025-08-24 07:12:34
754
原创 均匀实心球内部引力与半径成正比的牛顿壳层定理证明
使用牛顿壳层定理(参见第7.3.1节)证明,如果地球是一个均匀的实心球,那么其内部的引力与到中心的距离成正比。
2025-08-23 16:11:03
205
原创 求单位球内满足边界条件 u = z³ 的调和函数
在区域x2y2z2≤1内找到一个调和函数u,使得在边界x2y2z21上,u等于gz3。提示:根据第8.1节,解必须是一个三次调和多项式,并且它应该只依赖于x2y2z2和z(解释为什么)。唯一的方式是找到uz3az1−x2−y2−z2,其中a是未知系数。
2025-08-23 16:06:31
1110
原创 Python实现从Parquet文件生成Redshift表并存储SQL语句
Python实现解析存储Parquet文件的多个本地路径,获取其中的数据Schema,再根据这些Schema,得到创建上传数据到Amazon Redshift数据库表的SQL语句,并在Amazon Redshift里创建对应的表,并存储创建表的SQL语句,以便将Parquet文件上传到S3,并利用COPY命令导入Amazon Redshift数据库表。
2025-08-22 15:39:09
651
原创 PowerShell定时检查日期执行Python脚本
PowerShell语句每半小时检查一次当前的日期,如果当前的日期是开始运行时日期的第2天,则自动运行一段Python语句。
2025-08-18 20:29:58
545
原创 Linux Shell定时检查日期执行Python脚本
Linux下的Shell语句每半小时检查一次当前的日期,如果当前的日期是开始运行时日期的第2天,则自动运行一段Python语句。此方案使用标准的Bash日期计算,兼容主流Linux发行版(CentOS/Ubuntu等),通过睡眠循环实现定时检查,避免依赖外部定时任务。
2025-08-17 18:39:37
185
原创 VS Code配置MinGW64编译Eigen矩阵计算库
VS Code用MinGW64编译C++代码安装MSYS2软件并配置Eigen矩阵计算库和测试引用库代码的完整具体步骤。
2025-08-17 09:18:56
289
Pandas技术参考手册.docx
2021-08-09
SQL Server数据库技术手册.docx
2021-08-20
MySQL技术参考手册.docx
2021-08-06
Docker使用手册.docx
2021-09-02
Oracle数据库参考手册.docx
2021-08-19
Linux Shell使用手册.docx
2021-09-08
MFC技术参考手册.docx
2021-10-15
Flink技术参考手册.docx
2021-07-23
Kafka技术参考手册.docx
2021-07-20
Redis技术参考手册.docx
2021-09-14
Zookeeper 技术参考手册.docx
2021-07-20
HBase技术参考手册.docx
2021-06-22
PySpark数据处理技术大全
2025-01-08
PyTorch技术参考手册
2023-08-01
Tableau报表开发手册
2024-11-29
GCC技术参考手册.docx
2021-12-06
Salesforce SOQL和SOSL参考手册
2024-05-25
Apache Airflow技术参考手册
2022-11-22
Node.js技术参考手册
2023-07-13
机器学习技术参考手册.docx
2021-12-01
Spark技术参考手册
2022-07-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人