自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(718)
  • 资源 (73)
  • 收藏
  • 关注

原创 Cygwin环境下LAPACK库的安装与C++17项目配置指南

LAPACK(Linear Algebra Package)是用于数值线性代数运算的高性能库,提供了解决线性方程组、线性最小二乘问题、特征值问题和奇异值分解等功能的例程。它是科学计算和工程应用中不可或缺的基础库。

2025-09-15 18:52:49 357

原创 C#实现Hive建表语句转Snowflake建表语句

【代码】C#实现Snowflake建表语句转Hive建表语句。

2025-09-12 20:09:23 274

原创 求解指定泛函的驻点所满足的偏微分方程及边界条件

uxx−uxyuyy−fxyuxx​−uxy​uyy​−fxy边界条件如上述所示。

2025-09-11 18:59:10 713

原创 泛函Φ(u)驻点的方程与边界条件 / 求给定泛函驻点满足的方程及边界条件

的驻点,需要求解其欧拉-拉格朗日方程并推导自然边界条件。未被指定,因此需要从泛函的变分中推导自然边界条件。,并利用积分 by parts,得到在。接下来处理边界条件。的驻点所满足的方程和边界条件,其中。

2025-09-11 15:57:37 890

原创 最小曲面问题的欧拉-拉格朗日方程 / 曲面极值问题的变分法推导

(a) 写出最小面积曲面的欧拉-拉格朗日偏微分方程(边界条件为。写出最小能量曲面的欧拉-拉格朗日偏微分方程。这是最小能量曲面的欧拉-拉格朗日 PDE。问题 4. 曲面的面积为。

2025-09-11 12:25:11 734

原创 变分法问题:极小曲面欧拉-拉格朗日方程与二维泛函驻点的推导

此解对应悬链线,即最小旋转曲面(catenoid)。的驻点所满足的方程和边界条件,其中。写出欧拉-拉格朗日方程并求解它。:如果曲面是一个旋转曲面。对于旋转曲面的表面积泛函。为边界单位外法向量。

2025-09-11 09:09:35 300

原创 求解带线积分的泛函极值问题的欧拉方程及自然/狄利克雷边界条件

uxx−uxyuyy0在D内u_{xx} - u_{xy} + u_{yy} = 0 \quad \text{在} \quad D \text{ 内}uxx​−uxy​uyy​0在D内u∣y00u∣y10u∣x202ux−uy2gy在x0上。

2025-09-11 07:38:39 284

原创 悬链线问题的变分法求解:固定长度下的最小势能与边界条件分析

从而得到满足边界条件和长度约束的解。解的具体形式取决于参数。:一根重型柔性但不可伸长的线(链)的长度和能量分别为。方程 (5)、(6) 和 (7) 共同决定了常数。,使用拉格朗日乘子法。固定的情况下最小化能量。固定的情况下最小化能量。

2025-09-11 07:05:55 406

原创 变分法应用:求解固定边界条件下从 (0,0) 到 (a,−h) 的最短时间滑梯曲线

部分 (b) 要求找到最快滑梯的解(无长度约束),即最小化时间。为简化,在求解时,可定义。这是最速降线的微分方程。如果滑梯的形状由函数。是垂直坐标(向上为正),从。部分 (a) 要求最小化时间。问题2:我们需要构建从点。”可能为笔误,应为时间。注:在时间积分中,项。此解表示一条旋轮线。

2025-09-10 07:22:59 655

原创 变光速介质中光线路径的欧拉方程及降阶方法

在二维光传播中,如果点。由于拉格朗日量不显含。

2025-09-08 18:19:09 463

原创 球对称条件下波动方程与热方程的求解——基于球坐标与傅里叶级数展开的系列边值

问题4. 在以下问题中使用球坐标,注意解必须是球对称的:u=u(r,t) u = u(r,t) u=u(r,t)(解释为什么)。将解表示为关于 r r r 的相应傅里叶级数。并使用等式 rurr+2ur=(ru)rr. ru_{rr} + 2u_r = (ru)_{rr}. rurr​+2ur​=(ru)rr​.(a){utt−Δu=0,u∣r=1=0,u∣t=0=0,ut∣t=0=sin⁡(πr)\begin{cases}u_{tt} - \Delta u = 0, \\u|_{r=1} = 0,

2025-09-08 17:31:17 320

原创 球坐标系中拉普拉斯方程的分离变量与解的结构

这些取值确保了解在球坐标下的物理合理性(如周期性边界条件和解的有限性)。问题 1. (a) 用球坐标写出拉普拉斯方程。是分离常数(通常为非负整数)。是极角(从 z 轴开始),

2025-09-08 17:07:57 576

原创 球坐标系下调和函数的构造:多项式边界条件的求解方法

的个数较多,我将详细解答部分 (a)、(b)、©,并提供其他部分的解答思路和结果。对于所有部分,球的半径。为齐次调和多项式的和,并代入球坐标。对于其他部分,使用相同方法:设。具有某些旋转对称性,那么。表示为齐次调和多项式的和。问题3. (i) 求解。

2025-09-08 16:57:56 1064

原创 关联勒让德方程在极角Φ下的多项式解(l = 0, 1, 2, 3 及不同 m 值情形)

这些解均满足关联勒让德方程,并表示为。问题2. 对于Φ的方程,找到形式为。该问题涉及关联勒让德方程的解,其中。的多项式形式,次数为。

2025-09-06 13:21:07 428

原创 球坐标系下调和函数的构造:多项式边界条件的求解方法

的个数较多,我将详细解答部分 (a)、(b)、©,并提供其他部分的解答思路和结果。对于所有部分,球的半径。为齐次调和多项式的和,并代入球坐标。对于其他部分,使用相同方法:设。具有某些旋转对称性,那么。表示为齐次调和多项式的和。问题3. (i) 求解。

2025-09-05 18:40:43 878

原创 函数 u(x, y) = x² - y² 的调和性及在区域 D = {(x, y) : (x - 2)² + y² ≤ 1} 上的最大最小值

是调和函数,极值只在边界上达到,因此在整个区域。上的最大值和最小值,以及达到这些值的点。Alternatively, 从边界方程。是调和函数,根据最大模原理,在闭区域。上的最大值和最小值一定在边界。是二次函数,开口向上,顶点在。的最小值为 1,最大值为 9。是否为调和函数,并求在区域。

2025-09-05 11:15:02 848

原创 调和函数 u(x, y) = xy 的判定及其在圆域 D = {(x, y) : (x - 1)² + y² ≤ 1} 上的最大值与最小值

上的最大值和最小值,以及取得这些值的点。是调和函数,根据最大模原理,在闭区域。上的最大值和最小值必须在边界。是否为调和函数,并求在区域。是调和函数,这些也是区域。上的全局最大值和最小值。问题 14. 检查函数。

2025-09-05 11:00:10 858

原创 如何让MATLAB的M代码文件脱离MATLAB软件环境运行

MATLAB作为科学计算和算法开发的顶级工具,其强大的功能和丰富的工具箱深受工程师和科研人员的喜爱。然而,其运行依赖于昂贵的MATLAB软件环境,这在软件部署、分发和集成时带来了极大的限制。为了让开发成果能更广泛、更自由地应用,将M代码脱离MATLAB环境运行成为了一个常见且重要的需求。本文将详细论述实现这一目标的几种主流方法,包括代码转换、编译封装以及自主研发环境。

2025-09-05 06:36:55 929

原创 调和函数 u(x,y) = xy 在圆域 (x-2)² + y² ≤ 1 上的最大值与最小值

根据有界闭区域上连续函数的性质,函数。上一定能取得最大值和最小值。以及取得这些最值的点,其中。调和函数满足拉普拉斯方程。

2025-09-03 07:15:20 438

原创 矩阵运算的广泛性和MATLAB相关检查函数

在这个例子中,我们定义了两个复数矩阵A和B,并使用ishermitian和issymmetric函数来检查它们的属性。结果显示,矩阵A是对称的但不是Hermitian的,而矩阵B则是Hermitian的但不是对称的。在进行矩阵计算之前,了解矩阵的属性是非常重要的。这些函数不仅能够帮助我们选择合适的计算方法,还能够在计算开始前验证矩阵是否满足预期的属性。MATLAB的线性代数函数不仅适用于实数矩阵,也同样适用于复数矩阵。在MATLAB中,我们用AT表示矩阵A的转置,用A∗表示矩阵A的共轭转置。

2025-09-03 07:13:07 369

原创 调和函数的验证与极值求解:区域 D = {(x,y) : |y| ≤ x} 上的最值问题

是一个调和函数,并求出在区域。调和函数满足拉普拉斯方程。,以及取得这些最值的点。

2025-08-29 07:35:09 810

原创 重塑可观测性成本:解析Coralogix的智能成本优化之道

在云原生与微服务架构成为主流的今天,可观测性(Observability)已成为企业确保系统稳定、快速排障的必需品。然而,随着数据量的爆炸式增长,传统的可观测性平台所带来的成本也在急剧攀升。企业常常陷入两难境地:为了满足运维需求,不得不支付高昂的数据索引和存储费用;而为了控制成本,又可能被迫丢弃有价值的数据,从而埋下未知的风险隐患。Coralogix的出现,正是为了破解这一困境。它并非通过简单地限制数据摄入来降低成本,而是通过一系列创新的架构设计和技术手段,构建了一套。

2025-08-28 23:53:49 497

原创 调和函数的验证及区域极值问题

没有公共解,所以内部无极值点。调和函数满足拉普拉斯方程。是一个调和函数,并求出。以及取得最值的点,其中。

2025-08-28 10:14:30 582

原创 使用Python自动化VS 2022的C++项目构建流程

下载安装Developer Command Prompt for VS 2022的C/C++构建工具,然后用Python输出一个Hello World的C++代码文件,并用cl.exe编译运行,以及用Python生成一个C++控制台解决方案,并用msbuild编译并运行解决方案,配置为Debug x64,还有用CMake生成构建目录,以Visual Studio 2022生成器为例,并用cmake命令行编译项目,然后用code命令行,在VS Code中打开项目的全过程。

2025-08-27 15:54:28 919

原创 调和函数极值问题求解

是调和函数,且在无界区域。以及达到这些值的点,其中。是否为调和函数,并求。

2025-08-27 15:12:28 469

原创 拉普拉斯方程格林函数构造方法

这些格林函数是通过反射法构造的,确保了在边界上满足相应的狄利克雷或诺伊曼条件。反射法通过在与源点对称的点放置镜像电荷来满足边界条件。正如我们所知,在整个平面和整个空间中,它们就是势函数。,满足边界条件(详细计算见推导)。,满足边界条件(详细计算见推导)。拉普拉斯方程的格林函数满足。(a) 狄利克雷问题。

2025-08-27 09:13:36 417

原创 下载并安装Cygwin以及在其上安装apt-cyg、gcc、make和cmake

【代码】Cygwin上安装apt-cyg、gcc、make和cmake。

2025-08-26 20:49:27 299

原创 Cygwin安装Eigen库并编译C++代码

编写一段Shell脚本,可以复制粘贴到Cygwin终端窗口里安装Eigen库并用GCC编译调用Eigen库的C++代码并运行,支持检查配置信息(文件目录和环境变量)和重复运行。下载文件并解压到/usr/local/,然后删除下载文件。

2025-08-26 18:10:45 330

原创 Cygwin安装spdlog并编译C++代码

编写一段Shell脚本,可以复制粘贴到Cygwin终端窗口里安装spdlog库并用GCC编译调用spdlog库的C++代码,支持检查配置信息(文件目录和环境变量)和重复运行。

2025-08-26 18:06:22 373

原创 Cygwin安装MATIO库并编译C++代码

编写一段Shell脚本,可以复制粘贴到Cygwin终端窗口里安装MATIO库并用GCC编译调用MATIO库的C++代码,支持检查配置信息(文件目录和环境变量)和重复运行。

2025-08-26 18:01:32 674

原创 降维法推导泊松方程稳态解

假设Kirchhoff公式(9.1.12)是三维波动方程的标准解公式。从Kirchhoff公式(9.1.12)开始,并为n=3推导出(7.2.10),其中。通过将波动方程的解对时间积分,并利用Kirchhoff公式 with初始条件。问题要求从波动方程的Kirchhoff公式出发,通过降维法推导三维泊松方程。此即公式(7)所示。我们希望通过波动方程的解来构造稳态解。因此,从Kirchhoff公式通过降维法推导出了此结果。,得到了泊松方程的解及其格林函数。的稳态解,而不是非稳态解。此即公式(9.1.12)。

2025-08-26 07:34:14 855

原创 验证调和函数并求其在特定无界区域上的最大最小值

是调和函数,在无界区域上,需使用提示考虑截断区域。的边界上取得最大值和最小值。上的最大值和最小值,以及达到这些值的点。是调和函数,因为它满足拉普拉斯方程。因此,内部点无法超越边界上的极值。是调和函数,并求在区域。是一个无界闭集,其中。不能达到 ±1 除非。

2025-08-24 12:55:17 261

原创 数学分析中的调和函数极值原理

问题 4. (a) 利用极大值原理的证明,证明次调和函数的极大值原理和超调和函数的极小值原理。超调和函数的极小值原理(部分 (a))表明,极小值在边界上达到,因此在整个。(b) 证明次调和函数的极小值原理和超调和函数的极大值原理不成立(提示:用。超调和函数的极大值原理不成立:同样在单位球内,定义径向函数。中的调和函数、次调和函数和超调和函数,且在边界上相等。因此极小值在内部达到,违反极小值原理。因此极大值在内部达到,违反极大值原理。同样由超调和函数的极小值原理,在整个。的内部点达到极小值,除非。

2025-08-24 08:00:23 788

原创 C++进程监视器与自动启动程序

写一段Mingw64上编译和Windows 11上运行的GCC的C++程序,获取正在运行的进程窗口的标题,通过字符串来精确匹配,或者用通配符或正则表达式,获得一个进程列表,当这个进程列表中的所有进程都退出的时候,就自动调用一个另外的exe程序或bat批处理脚本,用ini配置文件来记录配置信息,实现异常处理和日志文件写入,日志包含发生错误和运行exe或bat文件的时间戳,运行状态,运行的文件名和出现错误时的函数调用堆栈。这个程序提供了完整的进程监视和自动执行功能,并包含了详细的日志记录和错误处理机制。

2025-08-24 07:12:34 754

原创 均匀实心球内部引力与半径成正比的牛顿壳层定理证明

使用牛顿壳层定理(参见第7.3.1节)证明,如果地球是一个均匀的实心球,那么其内部的引力与到中心的距离成正比。

2025-08-23 16:11:03 205

原创 求单位球内满足边界条件 u = z³ 的调和函数

在区域x2y2z2≤1内找到一个调和函数u,使得在边界x2y2z21上,u等于gz3。提示:根据第8.1节,解必须是一个三次调和多项式,并且它应该只依赖于x2y2z2和z(解释为什么)。唯一的方式是找到uz3az1−x2−y2−z2,其中a是未知系数。

2025-08-23 16:06:31 1110

原创 Python实现从Parquet文件生成Redshift表并存储SQL语句

Python实现解析存储Parquet文件的多个本地路径,获取其中的数据Schema,再根据这些Schema,得到创建上传数据到Amazon Redshift数据库表的SQL语句,并在Amazon Redshift里创建对应的表,并存储创建表的SQL语句,以便将Parquet文件上传到S3,并利用COPY命令导入Amazon Redshift数据库表。

2025-08-22 15:39:09 651

原创 PowerShell定时检查日期执行Python脚本

PowerShell语句每半小时检查一次当前的日期,如果当前的日期是开始运行时日期的第2天,则自动运行一段Python语句。

2025-08-18 20:29:58 545

原创 Linux Shell定时检查日期执行Python脚本

Linux下的Shell语句每半小时检查一次当前的日期,如果当前的日期是开始运行时日期的第2天,则自动运行一段Python语句。此方案使用标准的Bash日期计算,兼容主流Linux发行版(CentOS/Ubuntu等),通过睡眠循环实现定时检查,避免依赖外部定时任务。

2025-08-17 18:39:37 185

原创 VS Code配置MinGW64编译Eigen矩阵计算库

VS Code用MinGW64编译C++代码安装MSYS2软件并配置Eigen矩阵计算库和测试引用库代码的完整具体步骤。

2025-08-17 09:18:56 289

Pandas技术参考手册.docx

Pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,还可以连接数据库完成数据处理的流程。

2021-08-09

SQL Server数据库技术手册.docx

SQL Server 是Microsoft 公司推出的关系型数据库管理系统。具有使用方便可伸缩性好与相关软件集成程度高等优点,可跨越从运行Microsoft Windows 98 的膝上型电脑到运行Microsoft Windows 2012 的大型多处理器的服务器等多种平台使用。 Microsoft SQL Server 是一个全面的数据库平台,使用集成的商业智能 (BI)工具提供了企业级的数据管理。Microsoft SQL Server 数据库引擎为关系型数据和结构化数据提供了更安全可靠的存储功能,使您可以构建和管理用于业务的高可用和高性能的数据应用程序。

2021-08-20

MySQL技术参考手册.docx

MySQL是一种开放源代码的关系型数据库管理系统(RDBMS),使用最常用的数据库管理语言--结构化查询语言(SQL)进行数据库管理,本文档有MySQL数据库使用方法和代码示例,以及开发维护方法。

2021-08-06

Spark性能优化.docx

Spark性能优化的一些方法。

2021-08-31

Scala 开发教程.docx

Scala 开发教程

2021-08-31

Docker使用手册.docx

Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。

2021-09-02

Oracle数据库参考手册.docx

Oracle Database,又名Oracle RDBMS,或简称Oracle。是甲骨文公司的一款关系数据库管理系统。它是在数据库领域一直处于领先地位的产品。可以说Oracle数据库系统是目前世界上流行的关系数据库管理系统,系统可移植性好、使用方便、功能强,适用于各类大、中、小微机环境。它是一种高效率的、可靠性好的、适应高吞吐量的数据库方案。

2021-08-19

Linux Shell使用手册.docx

Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁。Shell 既是一种命令语言,又是一种程序设计语言。Shell 是指一种应用程序,这个应用程序提供了一个界面,用户通过这个界面访问操作系统内核的服务。

2021-09-08

MFC技术参考手册.docx

微软基础类库(英语:Microsoft Foundation Classes,简称MFC)是微软公司提供的一个类库(class libraries),以C++类的形式封装了Windows API,并且包含一个应用程序框架,以减少应用程序开发人员的工作量。其中包含大量Windows句柄封装类和很多Windows的内建控件和组件的封装类。

2021-10-15

Microsoft Azure Function Apps 操作大全.docx

Microsoft Azure Function Apps 原理与概述,开发部署流程。

2021-08-09

企业大数据基础平台搭建和实用开发代码.docx

企业大数据基础平台搭建和实用开发代码

2021-08-29

Java虚拟机技术手册.docx

Java虚拟机技术手册

2021-11-29

Flink技术参考手册.docx

Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。Flink以数据并行和流水线方式执行任意流数据程序,Flink的流水线运行时系统可以执行批处理和流处理程序。此外,Flink的运行时本身也支持迭代算法的执行。

2021-07-23

Kafka技术参考手册.docx

Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。

2021-07-20

DataProcessingUtility.zip

SQL Server CLR存储过程实现从SSIS包中查询文本数据,包括表名,视图名和字段名等。

2021-10-22

Redis技术参考手册.docx

Redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。

2021-09-14

Zookeeper 技术参考手册.docx

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

2021-07-20

Apache Hadoop技术参考手册.docx

关于Hadoop中YARN、MapReduce和HDFS等组件原理详细介绍,环境搭建和Hadoop 3.0新特性和编程方法。

2021-07-05

Apache Storm技术参考手册.docx

Apache Storm是一个分布式实时大数据处理系统。Storm设计用于在容错和水平可扩展方法中处理大量数据。

2021-06-23

HBase技术参考手册.docx

HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。

2021-06-22

C#实现Hive的建表语句转snowflake建表语句

C#实现Hive的建表语句转snowflake建表语句。

2025-07-17

PySpark数据处理技术大全

PySpark 是 Spark 的 Python API,提供了类似于 Spark Core、Spark SQL、Spark Streaming、MLlib 和 GraphX 等组件的接口。这些组件支持分布式计算、实时计算、流式计算、机器学习和图计算等功能‌。PySpark 特别适合处理大规模数据集,并且能够与其他 Python 库如 NumPy 和 Pandas 集成,使得数据处理和分析更加灵活和高效‌。

2025-01-08

AWS SAA-C02专家系统文档.docx

AWS 架构设计选型手册

2021-12-14

PyTorch技术参考手册

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。它既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大深度神经网络。除了Facebook外,PyTorch还被Twitter、CMU和Salesforce等机构采用。

2023-08-01

R语言的程序技术参考手册

R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

2024-12-05

Tableau报表开发手册

‌Tableau‌是一款强大的数据可视化和商业智能(BI)工具,旨在帮助用户快速分析、可视化并分享数据。它通过直观的拖放界面,允许用户无需编写代码即可创建动态仪表板和报告,适用于从小型企业到大型企业的各类组织‌。

2024-11-29

Python3 多线程网络编程与分布式爬虫技术手册.docx

Python3 多线程网络编程与分布式爬虫技术手册

2022-01-14

Apache HBase技术参考手册

Apache HBase技术参考手册

2022-01-26

Salesforce对象和语言参考手册

Salesforce标准和自定义对象,以及SOQL和SOSL语言的相关技术文档。

2024-05-25

GCC技术参考手册.docx

GCC(GNU Compiler Collection,GNU编译器套件)是由GNU开发的编程语言译器。GNU编译器套件包括C、C++、 Objective-C、 Fortran、Java、Ada和Go语言前端,也包括了这些语言的库(如libstdc++,libgcj等。)

2021-12-06

Saleforce标准对象参考手册

Saleforce标准对象参考手册

2024-05-25

Salesforce SOQL和SOSL参考手册

SOQL(Salesforce Object Query Language,Salesforce对象查询语言) SOSL(Salesforce Object Search Language,Salesforce对象搜索语言)

2024-05-25

Apache Airflow技术参考手册

Apache Airflow是一个Airbnb 的 Workflow 开源项目,用于开发、调度和监控面向批处理的工作流。Airflow的可扩展Python框架使您能够构建与几乎任何技术连接的工作流程。Web界面有助于管理工作流的状态。Airflow可通过多种方式进行部署,从笔记本电脑上的单个进程到分布式设置,以支持最大的工作流程。

2022-11-22

Node.js技术参考手册

Node.js是一个基于Chrome V8引擎的JavaScript运行环境,用于在服务端上运行JavaScript。它使用了一个事件驱动、非阻塞式I/O模型,使得JavaScript可以与PHP、Python、Perl、Ruby等服务端语言平起平坐的脚本语言。Node.js对一些特殊用例进行优化,提供替代的API,使得V8在非浏览器环境下运行得更好,V8引擎执行Javascript的速度非常快,性能非常好,基于Chrome JavaScript运行时建立的平台, 用于方便地搭建响应速度快、易于扩展的网络应用。

2023-07-13

机器学习技术参考手册.docx

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

2021-12-01

云数据库Snowflake技术参考手册

云数据库Snowflake技术参考手册

2022-02-10

云数据库Snowflake技术参考手册

云数据库Snowflake技术参考手册

2022-02-10

Spark技术参考手册

Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

2022-07-08

Databricks技术参考手册

Databricks是Spark 的商业化公司,致力于提供基于 Spark 的云服务,可用于数据集成,数据管道等任务。

2022-06-23

Databricks技术参考手册

Databricks是Spark 的商业化公司,致力于提供基于 Spark 的云服务,可用于数据集成,数据管道等任务。

2022-06-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除