调和函数极值问题求解

题目

问题13:验证函数
u(x,y)=−sin⁡(y)e−x u(x, y) = -\sin(y) e^{-x} u(x,y)=sin(y)ex
是否为调和函数,并求
max⁡(x,y)∈Du(x,y)和min⁡(x,y)∈Du(x,y) \max_{(x, y) \in D} u(x, y) \quad \text{和} \quad \min_{(x, y) \in D} u(x, y) (x,y)Dmaxu(x,y)(x,y)Dminu(x,y)
以及达到这些值的点,其中
D={ (x,y):∣y∣≤x/3} D = \{(x, y) : |y| \leq x / \sqrt{3} \} D={ (x,y):yx/3 }

解答

第一步:验证 u u u 是调和函数

调和函数需满足拉普拉斯方程:
Δu=∂2u∂x2+∂2u∂y2=0 \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 Δu=x22u+y22u=0
计算一阶偏导数:
∂u∂x=∂∂x(−sin⁡(y)e−x)=−sin⁡(y)⋅(−e−x)=sin⁡(y)e−x \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left( -\sin(y) e^{-x} \right) = -\sin(y) \cdot (-e^{-x}) = \sin(y) e^{-x} xu=x(sin(y)ex)=sin(y)(ex)=sin(y)ex
∂u∂y=∂∂y(−sin⁡(y)e−x)=−e−xcos⁡(y) \frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left( -\sin(y) e^{-x} \right) = -e^{-x} \cos(y) yu=y(sin(y)ex)=excos(y)
计算二阶偏导数:
∂2u∂x2=∂∂x(sin⁡(y)e−x)=sin⁡(y)⋅(−e−x)=−sin⁡(y)e−x \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left( \sin(y) e^{-x} \right) = \sin(y) \cdot (-e^{-x}) = -\sin(y) e^{-x} x22u=x(sin(y)ex)=sin(y)(ex)=sin(y)ex
∂2u∂y2=∂∂y(−e−xcos⁡(y))=−e−x⋅(−sin⁡(y))=e−xsin⁡(y) \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left( -e^{-x} \cos(y) \right) = -e^{-x} \cdot (-\sin(y)) = e^{-x} \sin(y) y22u=y(excos(y))=ex(sin(y))=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值