题目
问题13:验证函数
u(x,y)=−sin(y)e−x u(x, y) = -\sin(y) e^{-x} u(x,y)=−sin(y)e−x
是否为调和函数,并求
max(x,y)∈Du(x,y)和min(x,y)∈Du(x,y) \max_{(x, y) \in D} u(x, y) \quad \text{和} \quad \min_{(x, y) \in D} u(x, y) (x,y)∈Dmaxu(x,y)和(x,y)∈Dminu(x,y)
以及达到这些值的点,其中
D={
(x,y):∣y∣≤x/3} D = \{(x, y) : |y| \leq x / \sqrt{3} \} D={
(x,y):∣y∣≤x/3}
解答
第一步:验证 u u u 是调和函数
调和函数需满足拉普拉斯方程:
Δu=∂2u∂x2+∂2u∂y2=0 \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 Δu=∂x2∂2u+∂y2∂2u=0
计算一阶偏导数:
∂u∂x=∂∂x(−sin(y)e−x)=−sin(y)⋅(−e−x)=sin(y)e−x \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left( -\sin(y) e^{-x} \right) = -\sin(y) \cdot (-e^{-x}) = \sin(y) e^{-x} ∂x∂u=∂x∂(−sin(y)e−x)=−sin(y)⋅(−e−x)=sin(y)e−x
∂u∂y=∂∂y(−sin(y)e−x)=−e−xcos(y) \frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left( -\sin(y) e^{-x} \right) = -e^{-x} \cos(y) ∂y∂u=∂y∂(−sin(y)e−x)=−e−xcos(y)
计算二阶偏导数:
∂2u∂x2=∂∂x(sin(y)e−x)=sin(y)⋅(−e−x)=−sin(y)e−x \frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left( \sin(y) e^{-x} \right) = \sin(y) \cdot (-e^{-x}) = -\sin(y) e^{-x} ∂x2∂2u=∂x∂(sin(y)e−x)=sin(y)⋅(−e−x)=−sin(y)e−x
∂2u∂y2=∂∂y(−e−xcos(y))=−e−x⋅(−sin(y))=e−xsin(y) \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left( -e^{-x} \cos(y) \right) = -e^{-x} \cdot (-\sin(y)) = e^{-x} \sin(y) ∂y2∂2u=∂y∂(−e−xcos(y))=−e−x⋅(−sin(y))=