sql-行列转换

本文详细介绍如何使用SQL进行数据聚合操作,包括group_concat函数的使用,以及如何将行数据转换为列数据,反之亦然。通过具体实例展示了如何按月份汇总销售数据,并提供了列转行和行转列的实用SQL代码。

 group_concat( [distinct] 要连接的字段 [order by 排序字段 asc/desc ] [separator '分隔符'] )

SELECT GROUP_CONCAT(DISTINCT NAME),mon FROM sale GROUP BY mon

 

 

 

 

 

 

 SELECT a.`name`,a.mon,

SUM(CASE RIGHT(a.mon,2) WHEN '01'  THEN sa ELSE 0 END) '01月',
SUM(CASE RIGHT(a.mon,2) WHEN '02'  THEN sa ELSE 0 END) '02月',
SUM(CASE RIGHT(a.mon,2) WHEN '03'  THEN sa ELSE 0 END) '03月',
SUM(CASE RIGHT(a.mon,2) WHEN '04'  THEN sa ELSE 0 END) '04月',
SUM(CASE RIGHT(a.mon,2) WHEN '05'  THEN sa ELSE 0 END) '05月',
SUM(CASE RIGHT(a.mon,2) WHEN '06'  THEN sa ELSE 0 END) '06月',
SUM(CASE RIGHT(a.mon,2) WHEN '07'  THEN sa ELSE 0 END) '07月',
SUM(CASE RIGHT(a.mon,2) WHEN '08'  THEN sa ELSE 0 END) '08月',
SUM(CASE RIGHT(a.mon,2) WHEN '09'  THEN sa ELSE 0 END) '09月',
SUM(CASE RIGHT(a.mon,2) WHEN '10'  THEN sa ELSE 0 END) '10月',
SUM(CASE RIGHT(a.mon,2) WHEN '11'  THEN sa ELSE 0 END) '11月',
SUM(CASE RIGHT(a.mon,2) WHEN '12'  THEN sa ELSE 0 END) '12月'

FROM sale a

GROUP BY a.mon

 

 

 

 

 

 

 

 

 

行转列列传行更具体例子

   1、查看数据

Sql代码  收藏代码
  1. SELECT  * FROM tabName ;  

 

   

   2、列转行统计数据

Sql代码  收藏代码
  1. SELECT DATE ,  
  2.     MAX(CASE NAME WHEN '小说' THEN Scount ELSE 0 END ) 小说,  
  3.     MAX(CASE NAME WHEN '微信' THEN Scount ELSE 0 END ) 微信   
  4. FROM TabName    
  5. GROUP BY DATE  

3、行转列
Sql代码  收藏代码
  1. SELECT DATE,GROUP_CONCAT(NAME) FROM tabname GROUP BY DATE  

 

4、行转列统计数据

Sql代码  收藏代码
  1. SELECT DATE, GROUP_CONCAT(NAME,'总量:',Scount) AS b_str FROM tabName GROUP BY DATE  
   
Sql代码  收藏代码
  1. SELECT DATE,NAME, GROUP_CONCAT(NAME,'总量:',Scount) AS b_str FROM   TabName GROUP BY DATE ,NAME  

 

转载于:https://www.cnblogs.com/jentary/p/11579319.html

【重磅原创改进代码】基于自适应峰谷感知(APVP)多头注意力(MHA)多任务学习(MTL)的多变量多输出时间序列预测【电气综合能源】(Python代码实现)内容概要:本文介绍了一种基于自适应峰谷感知(APVP)的多头注意力(MHA)与多任务学习(MTL)相结合的深度学习模型,用于电气综合能源领域的多变量多输出时间序列预测。该模型通过引入APVP机制,有效捕捉时间序列中的峰谷变化特征,增强对关键趋势的敏感性,结合MHA提升模型对多变量间复杂依赖关系的建模能力,并利用MTL框架实现多个相关预测任务的联合优化,从而提高预测精度与泛化能力。代码基于Python实现,适用于负荷、发电、储能等多种能源变量的协同预测。; 适合人群:具备Python编程基础和深度学习背景,从事电气工程、综合能源系统、时间序列预测等相关领域的研究人员及研究生。; 使用场景及目标:①应用于综合能源系统中的多源数据预测,如电力负荷、光伏发电、风电出力等多变量联合预测;②提升对能源系统中峰谷特性的识别与预测能力,优化调度决策;③为多任务学习与注意力机制在能源领域的创新应用提供代码参考与实验基础。; 阅读建议:建议读者结合实际能源数据集进行模型复现与调参,重点关注APVP模块的设计逻辑与MHA在多变量关联建模中的作用,同时可通过消融实验验证各组件对预测性能的贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值