HZOI20190821模拟28题解

本文详细解析了两道ACM竞赛题目,包括图论中的路径选取算法和动态规划解决的字符串匹配问题,提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题面:https://www.cnblogs.com/Juve/articles/11390839.html

所有官方正解在我的文件里

A. 虎

算法1:我们发现非关键边与黑色边去掉以后,答案就是将所有度数为奇数的点作为路径的端点,所以记去掉非关键边与黑色边以后度数为奇数的点的个数为s,而一条路径有2个端点,所以答案就是$\frac{s}{2}$。

注意映射

#include<iostream>
#include<cstdio>
#include<cstring>
#define MAXN 1000005
using namespace std;
int n,ans=0,du[MAXN],id[MAXN],tot=0;
signed main(){
	scanf("%d",&n);
	for(int i=2,x,y,z;i<=n;i++){
		scanf("%d%d%d",&x,&y,&z);
		if(z==0){
			if(id[i]) id[x]=id[i];
			else if(id[x]) id[i]=id[x];
			else id[x]=id[i]=++tot;
		}
		if(y==0){
			if(!id[i]) id[i]=++tot;
			if(!id[x]) id[x]=++tot;
			du[id[i]]++,du[id[x]]++;
		}
	}
	for(int i=2;i<=tot;i++){
		if(du[i]&1) ans++;
	}
	printf("%d\n",(ans+1)/2);
	return 0;
}

算法2:不妨设0号点为根,那么将i到j的路径取反等价于将0到i和0到j的路径取反,因此只要求出最少需要将多少条到根的路径取反,然后除以二上取整就是答案。用f[i]表示i的子树中所有边(包括 i 连向父亲的边)满足条件时的最少取反路径数,只要先对i的所有儿子的f值求和,然后判断i连向父亲的边是否满足条件,如果不满足再+1即可。

B:阴阳

放个代码就跑

 

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define MAXN 1005
using namespace std;
const int mod=1e9+7;
int n,m,ans=0,sum_b[MAXN][MAXN],sum_w[MAXN][MAXN];
char ch[MAXN],app_b=0,app_w=0;
int work1(){
	int f[MAXN][MAXN]={0},res=0;
	f[0][0]=1;
	for(int i=1;i<=n;++i){
        for(int j=0;j<=m;++j){
            if(sum_w[i][j]) break;
            if(sum_b[i][m]-sum_b[i][j]) continue;
            for(int k=0;k<=j;++k)
                f[i][j]=(f[i][j]+f[i-1][k])%mod;
			if(i==n) (res+=f[n][j])%=mod;
        }
	}
    return res%mod;
}
int work2(){
	int f[MAXN][MAXN]={0},res=0;
    f[0][0]=1;
    for(int i=1;i<=n;++i){
        for(int j=0;j<=m;++j){
            if(sum_b[i][j]) break;
            if(sum_w[i][m]!=sum_w[i][j]) continue;
            for(int k=0;k<=j;++k)
                f[i][j]=(f[i][j]+f[i-1][k])%mod;
			if(i==n) (res+=f[n][j])%=mod;
        }
	}
    return res%mod;
}
int work3(){
	int f[MAXN][MAXN]={0},res=0;
    f[0][m]=1;
    for(int i=1;i<=n;++i){
        for(int j=0;j<=m;++j){
            if(sum_w[i][j]) break;
            if(sum_b[i][m]-sum_b[i][j]) continue;
            for(int k=j;k<=m;++k)
                f[i][j]=(f[i][j]+f[i-1][k])%mod;
			if(i==n) (res+=f[n][j])%=mod;
        }
	}
    return res%mod;
}
int work4(){
	int f[MAXN][MAXN]={0},res=0;
    f[0][m]=1;
    for(int i=1;i<=n;++i){
        for(int j=0;j<=m;++j){
            if(sum_b[i][j]) break;
            if(sum_w[i][m]-sum_w[i][j]) continue;
            for(int k=j;k<=m;++k)
                f[i][j]=(f[i][j]+f[i-1][k])%mod;
			if(i==n) (res+=f[n][j])%=mod;
        }
	}
	return res%mod;
}
int work5(){
	int res=0;
	for(int i=0;i<=n;++i){
        bool flag=0;
        for(int j=1;j<=i;++j)
            if(sum_w[j][m]){
				flag=1;break;
			}
        if(flag) break;
        for(int j=i+1;j<=n;++j)
            if(sum_b[j][m]){
				flag=1;break;
			}
        if(flag) continue;
        res++;
    }
	return res%mod;
}
int work6(){
	int res=0;
	for(int i=0;i<=n;++i){
        bool flag=0;
        for(int j=1;j<=i;++j)
            if(sum_b[j][m]){
				flag=1;break;
			}
        if(flag) break;
        for(int j=i+1;j<=n;++j)
            if(sum_w[j][m]){
				flag=1;break;
			}
        if(flag) continue;
        res++;
    }
	return res%mod;
}
int work7(){
	int res=0;
	for(int i=0;i<=m;++i){
        bool flag=0;
        for(int j=1;j<=n;++j){
            if(sum_w[j][i]){
                flag=1;
                break;
            }
			if(sum_b[j][m]!=sum_b[j][i]){
				flag=1;
				break;
			}
		}
        if(flag) continue;
        res++;
    }
	return res%mod;
}
int work8(){
	int res=0;
	for(int i=0;i<=m;++i){
        bool flag=0;
        for(int j=1;j<=n;++j){
            if(sum_b[j][i]){
                flag=1;
                break;
            }
			if(sum_w[j][m]!=sum_w[j][i]){
                flag=1;
                break;
            }
		}
        if(flag) continue;
        res++;
    }
	return res%mod;
}
signed main(){
	//freopen("test.in","r",stdin);
	//freopen("b1.out","w",stdout);
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		scanf("%s",ch+1);
		for(int j=1;j<=m;j++){
			sum_b[i][j]=sum_b[i][j-1];sum_w[i][j]=sum_w[i][j-1];
			if(ch[j]=='B') sum_b[i][j]++,app_b=1;
			if(ch[j]=='W') sum_w[i][j]++,app_w=1;
		}
	}
	if(!app_b) ans++;
	if(!app_w) ans++;
	(ans+=work1())%=mod;
	(ans+=work2())%=mod;
	(ans+=work3())%=mod;
	(ans+=work4())%=mod;
	(ans-=work5())%=mod;
	(ans-=work6())%=mod;
	(ans-=work7())%=mod;
	(ans-=work8())%=mod;
	ans%=mod;
	printf("%d\n",ans);
	return 0;
}

 

转载于:https://www.cnblogs.com/Juve/p/11390895.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值