18、 二叉搜索树的深入理解与应用

二叉搜索树的深入理解与应用

1. 二叉搜索树的定义及性质

二叉搜索树(BST,Binary Search Tree)是一种特殊的二叉树,它具有以下特性:
- 每个节点包含一个键值、一个关联的值、一个指向左子树的引用和一个指向右子树的引用。
- 左子树的所有节点键值小于根节点的键值。
- 右子树的所有节点键值大于根节点的键值。
- 左子树和右子树各自也是一棵二叉搜索树。

这些特性使得二叉搜索树非常适合用于动态集合和查找表的应用。它支持高效的插入、删除和查找操作,但性能依赖于树的形状。理想情况下,树是平衡的,查找、插入和删除的时间复杂度为 ( O(\log n) )。然而,最坏情况下(如树退化成链表),时间复杂度会退化为 ( O(n) )。

1.1 插入操作

插入操作是构建和维护二叉搜索树的关键步骤之一。以下是插入操作的具体步骤:
1. 查找插入位置 :从根节点开始,比较新节点的键值与当前节点的键值,若小于当前节点的键值,则往左子树查找;若大于,则往右子树查找,直到找到一个空位置。
2. 插入新节点 :在找到的空位置插入新节点。

void Insert(Node*& root, int key) {
    if (root == nullptr) {
        root = new Node(key);
    } else if (key < root->key) {
        Insert(root->lef
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值