二叉搜索树的深入理解与应用
1. 二叉搜索树的定义及性质
二叉搜索树(BST,Binary Search Tree)是一种特殊的二叉树,它具有以下特性:
- 每个节点包含一个键值、一个关联的值、一个指向左子树的引用和一个指向右子树的引用。
- 左子树的所有节点键值小于根节点的键值。
- 右子树的所有节点键值大于根节点的键值。
- 左子树和右子树各自也是一棵二叉搜索树。
这些特性使得二叉搜索树非常适合用于动态集合和查找表的应用。它支持高效的插入、删除和查找操作,但性能依赖于树的形状。理想情况下,树是平衡的,查找、插入和删除的时间复杂度为 ( O(\log n) )。然而,最坏情况下(如树退化成链表),时间复杂度会退化为 ( O(n) )。
1.1 插入操作
插入操作是构建和维护二叉搜索树的关键步骤之一。以下是插入操作的具体步骤:
1. 查找插入位置 :从根节点开始,比较新节点的键值与当前节点的键值,若小于当前节点的键值,则往左子树查找;若大于,则往右子树查找,直到找到一个空位置。
2. 插入新节点 :在找到的空位置插入新节点。
void Insert(Node*& root, int key) {
if (root == nullptr) {
root = new Node(key);
} else if (key < root->key) {
Insert(root->lef