[HNOI2010]CITY 城市建设

本文介绍使用CDQ分治策略求解带边长度修改的最小生成树(MST)问题的方法。通过设置未处理边权重为负无穷或正无穷,筛选出一定有用或一定无用的边,结合启发式合并的并查集,实现O(nlog^2n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

给一张图,支持边长度修改,求MST

题解:

自己想就想不到了。。

考虑cdq分治

1.首先求出一定有用的边

对于未处理的边,全部设为-INF,求一次MST,出现在MST上的边一定最终出现在后面的MST上

2.然后求出一定无用的边

对于未处理的边,全部设为INF,求一次MST,不在MST上的边一定不会出现在后面的MST上

这两点非常好证明

然后来观察一下时间复杂度

对于1,求出了一定有用的边,那至少有n-[区间长度]条(因为至少有n-1条边)

我们把它们缩点,这样之后,点数就保证和区间长度同一个数量级

对于2,求出了一定无用的边,那至少有n-[区间长度]条(因为点数是[区间长度],有用的只有[区间长度],所以2有用是建立在1的基础上的)

这样会发现,每个区间点数和边数都是和区间长度基本一致的

然后是代码实现

我们要维护连通性用到了并查集

发现这个并查集是要支持撤销的,也就是让他的父亲等于0

显然是用启发式合并的并查集

f(n)=f(n/2)+logn 复杂度nlognlogn

转载于:https://www.cnblogs.com/yinwuxiao/p/8882917.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值