【Pytorch】TensorDataset

本文介绍了如何在PyTorch中使用TensorDataset对张量打包,并配合DataLoader进行数据集管理和迭代。通过实例展示了如何创建数据集、设置批次大小和数据打乱,有助于理解这两个API在深度学习中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from torch.utils.data import DataLoader, Dataset, TensorDataset

主要是在使用过程中对不熟悉的api做个记录。

作用:可以用来对tensor进行打包。

代码:

a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = torch.tensor([44, 55, 66, 44, 55, 66, 44, 55, 66, 44, 55, 66])

# TensorDataset对tensor进行打包
train_ids = TensorDataset(a, b) 
for x_train, y_label in train_ids:
    print(x_train, y_label)

# dataloader进行数据封装
print('=' * 80)
train_loader = DataLoader(dataset=train_ids, batch_size=4, shuffle=True)
for i, data in enumerate(train_loader, 1):  
# 注意enumerate返回值有两个,一个是序号,一个是数据(包含训练数据和标签)
    x_data, label = data
    print(' batch:{0} x_data:{1}  label: {2}'.format(i, x_data, label))

运行结果:

tensor([1, 2, 3]) tensor(44)
tensor([4, 5, 6]) tensor(55)
tensor([7, 8, 9]) tensor(66)
tensor([1, 2, 3]) tensor(44)
tensor([4, 5, 6]) tensor(55)
tensor([7, 8, 9]) tensor(66)
tensor([1, 2, 3]) tensor(44)
tensor([4, 5, 6]) tensor(55)
tensor([7, 8, 9]) tensor(66)
tensor([1, 2, 3]) tensor(44)
tensor([4, 5, 6]) tensor(55)
tensor([7, 8, 9]) tensor(66)
================================================================================
 batch:1 x_data:tensor([[1, 2, 3],
        [1, 2, 3],
        [4, 5, 6],
        [4, 5, 6]])  label: tensor([44, 44, 55, 55])
 batch:2 x_data:tensor([[4, 5, 6],
        [7, 8, 9],
        [7, 8, 9],
        [7, 8, 9]])  label: tensor([55, 66, 66, 66])
 batch:3 x_data:tensor([[1, 2, 3],
        [1, 2, 3],
        [7, 8, 9],
        [4, 5, 6]])  label: tensor([44, 44, 66, 55])

pytorch之TensorDataset - Ronin的文章 - 知乎 https://zhuanlan.zhihu.com/p/349083821 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值