2025年人工智能发展的主要趋势:
- 模型规模与效率的平衡:
- 不再仅仅依赖增加参数数量来提升模型性能,而是更注重“扩张正确的事情”,即提高推理效率。
- 小型模型在2024年取得了显著进展,可以通过量化技术和训练策略的改进,在边缘设备上运行,并且在特定领域表现出竞争力。
- 预计将出现更多专注于高效推理和实用性的开源及专有模型。
- 小样本学习和零样本学习:
- 大规模预训练显著提高了小样本学习能力,通过微调少量示例即可达到与完全监督系统相当的结果。
- 零样本学习的能力预计将达到与目前的小样本学习相当的水平。
- 强化微调技术可能变得更加普遍,只需少量示例即可达到监督训练的性能。
- 逻辑推理能力的增强:
- 2025年,开发更高级推理能力将成为一个主要方向,包括自动思维链生成、自然语言程序搜索以及将生成模型与符号或基于图形的推理相结合。
- 硬件导向的模型架构:
- 模型架构将针对特定硬件特性进行定制,以实现最佳性能。
- 主要硬件公司将进行大量研究和投资,这可能会推动移动LLM的发展。
- Transformer架构的改进与替代: