全球数据保护法律与云服务的合规挑战

全球数据保护法律与云服务的合规挑战

随着云计算服务的普及,全球各地的数据保护法律对云服务供应商和客户提出了越来越高的合规要求。本文旨在探讨这些法律如何影响云服务的运营,并为云服务客户和供应商提供合规指导。

背景简介

在全球范围内,个人数据的隐私和安全已成为重要的法律议题。许多国家和地区已经制定了涵盖广泛数据保护的法律,如欧盟的GDPR、中国的网络安全法,以及美国各州的数据保护法律。这些法律不仅对个人隐私保护提出了要求,还对跨境数据传输、安全措施、以及合同中应包含的保护义务等进行了规定。

共同主题与安全措施

数据保护法律通常包含要求采取安全措施的规定,以防止个人数据的丢失、滥用或改变。这些法律承认确保个人数据的安全对于确保个人隐私的保护至关重要。公司需要采取包括技术、物理和行政措施在内的综合措施来保护包括个人数据、财务数据、商业秘密和其他敏感数据。

跨境数据传输的限制

许多国家禁止或限制信息跨国界传输,除非数据接收国提供了足够的保护水平。在某些情况下,数据传输前需要获得当地数据保护专员的事先许可。此外,一些国家,如俄罗斯和中国,要求将某些数据存储在国家境内。

区域示例

不同地区有不同的信息隐私和数据保护法律及法律框架。以亚太地区为例,澳大利亚的隐私法和消费者法为云服务的消费者提供保护;中国的网络安全法要求网络运营商遵守一系列安全要求,并引入数据本地化规定;日本的个人信息保护法要求私营部门保护个人数据安全,而欧盟的GDPR则在全球范围内引起了广泛关注和讨论。

合同和供应商选择

即使某项活动没有受到特定法律的规范,云客户也可能有合同义务保护个人数据。云服务客户需要保证,当数据托管在云上时,能够持续履行其在隐私声明或其他合同中所做出的承诺。云服务供应商必须允许客户访问、修改和删除个人数据,其程度应与非云关系中的情况相同。

总结与启发

全球数据保护法律要求云服务供应商和客户在提供和使用云服务时必须遵守更加严格的安全和隐私保护标准。这些法律给云服务行业带来了合规挑战,也促使云服务提供商重新审视其安全措施和合同条款。对于云服务客户而言,选择合适的供应商并确保数据处理活动符合相关法律要求变得至关重要。

文章的结论是,云服务供应商和客户需要密切关注全球数据保护法律的发展,并采取积极措施来确保合规。未来的云服务行业将更加重视数据保护和隐私权的尊重。

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
内容概要:本文详细介绍了哈希表及其相关概念和技术细节,包括哈希表的引入、哈希函数的设计、冲突处理机制、字符串哈希的基础、哈希错误率分析以及哈希的改进应用。哈希表作为一种高效的数据结构,通过键值对存储数据,能够快速定位和检索。文中讨论了整数键值和字符串键值的哈希方法,特别是字符串哈希中的多项式哈希及其优化方法,如双哈希和子串哈希的快速计算。此外,还探讨了常见的冲突处理方法——拉链法和闭散列法,并提供了C++实现示例。最后,文章列举了哈希在字符串匹配、最长回文子串、最长公共子字符串等问题中的具体应用。 适合人群:计算机科学专业的学生、算法竞赛选手以及有一定编程基础并对数据结构和算法感兴趣的开发者。 使用场景及目标:①理解哈希表的工作原理及其在各种编程任务中的应用;②掌握哈希函数的设计原则,包括如何选择合适的模数和基数;③学会处理哈希冲突的方法,如拉链法和闭散列法;④了解并能运用字符串哈希解决实际问题,如字符串匹配、回文检测等。 阅读建议:由于哈希涉及较多数学知识和编程技巧,建议读者先熟悉基本的数据结构和算法理论,再结合代码实例进行深入理解。同时,在实践中不断尝试不同的哈希策略,对比性能差异,从而更好地掌握哈希技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值