提升记忆力的实用课程与阿尔茨海默病家庭护理指南

背景简介

随着社会老龄化的加剧,老年人的心理健康问题越来越受到重视。记忆力下降是老年人常见的问题之一,而阿尔茨海默病作为一种严重的神经退行性疾病,不仅影响患者,也给家庭护理人员带来了巨大的挑战。本篇博文将探讨两本针对这些议题的专业书籍,以期为读者提供实用的指导和帮助。

Strengthen Your Mind Program: A Course for Memory Enhancement

由Kristin Einberger和Janelle Sellick所著的《增强心智计划》是一本专为记忆受损人群设计的课程指南。书籍采用12个课程模块的形式,每个模块都包含针对特定记忆功能的活动。这些活动在实际记忆增强课程中经过了测试,证实了其有效性。作者指出,尽管市面上充斥着大量关于记忆提升技巧的书籍,但他们的课程是专门为那些已经存在记忆问题的成年人设计的。

课程内容与特色

每个课程模块都包含了以下几个部分:

  • 主题概述 :为指导者提供关于本课程目标和重点的简要介绍。
  • 引导者指导 :详细步骤指导,帮助指导者顺利进行课程。
  • 课程议程 :安排好一天的活动流程。
  • 热身活动、测验、练习活动、讲义和家庭作业 :一系列活动帮助参与者在游戏中学习和记忆。

此外,书籍还包括了“如何使用本书”的章节,以及一个总结和完成所有课程的参与者证书,增强了学习的仪式感和成就感。

实用性分析

这本书不仅适合老年病学的专业人士,如治疗师和护理人员,也适合老年心理学的学习者和对记忆训练感兴趣的普通读者。它提供了一种结构化的学习方式,让记忆受损者能够在家人的帮助下逐步提升记忆力。

The Alzheimer’s Family: Helping Caregivers Cope

另一本书籍《阿尔茨海默病家庭:帮助护理人员应对》由Robert B. Santulli所著,关注的是阿尔茨海默病患者及其家庭护理人员。作者从社会和家庭角度出发,深入探讨了阿尔茨海默病对家庭的影响,并提供了一系列应对策略。

内容框架

书籍首先提出了对阿尔茨海默病的初步理解,随后通过具体的案例,讨论了如何理解和与患者及其家庭互动。书中详细介绍了疾病的原因、进展,以及家庭如何面对这一现实,包括如何处理长期护理和护理终止的决策。

对家庭护理人员的价值

对于护理人员来说,本书不仅提供了对阿尔茨海默病深入的理解,更重要的是提供了实用的应对方法和技巧,帮助他们确保患者和自身的福祉。此外,书籍还附有药物治疗列表和相关风险,为护理人员提供了科学的参考。

总结与启发

两本书籍为我们提供了针对老年心理健康问题的不同视角和实用工具。《增强心智计划》强调通过系统的活动提升记忆,而《阿尔茨海默病家庭》则着重于家庭护理人员的心理支持与应对策略。这些知识和技巧不仅对专业人士有重要的参考价值,也对我们如何更好地照顾老年亲友提供了启示。

在当今社会,老龄化问题日益严峻,我们每个人都可能成为照顾者或被照顾者。了解并掌握这些知识,对于提升老年人的生活质量、减轻家庭压力具有重要的社会意义。同时,它也提醒我们,关爱老年群体,不仅需要物质上的支持,更需要心理上的理解和科学的指导。

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
内容概要:本文详细介绍了哈希表及其相关概念和技术细节,包括哈希表的引入、哈希函数的设计、冲突处理机制、字符串哈希的基础、哈希错误率分析以及哈希的改进应用。哈希表作为一种高效的数据结构,通过键值对存储数据,能够快速定位和检索。文中讨论了整数键值和字符串键值的哈希方法,特别是字符串哈希中的多项式哈希及其优化方法,如双哈希和子串哈希的快速计算。此外,还探讨了常见的冲突处理方法——拉链法和闭散列法,并提供了C++实现示例。最后,文章列举了哈希在字符串匹配、最长回文子串、最长公共子字符串等问题中的具体应用。 适合人群:计算机科学专业的学生、算法竞赛选手以及有一定编程基础并对数据结构和算法感兴趣的开发者。 使用场景及目标:①理解哈希表的工作原理及其在各种编程任务中的应用;②掌握哈希函数的设计原则,包括如何选择合适的模数和基数;③学会处理哈希冲突的方法,如拉链法和闭散列法;④了解并能运用字符串哈希解决实际问题,如字符串匹配、回文检测等。 阅读建议:由于哈希涉及较多数学知识和编程技巧,建议读者先熟悉基本的数据结构和算法理论,再结合代码实例进行深入理解。同时,在实践中不断尝试不同的哈希策略,对比性能差异,从而更好地掌握哈希技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值