lstm预测模型_基于LSTMConvolutional网络的光伏功率预测

提出一种基于LSTM-卷积网络的光伏功率预测模型,该模型能够有效提取光伏数据的时间与空间特征,实验证明相较于单一模型,混合模型的预测精度更高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于CNN和LSTM的混合预测模型不仅可以利用CNN模型消除噪声并考虑多变量之间的相关性来提取光伏数据的空间特征,还可以利用LSTM模型对时间信息进行建模并提取光伏数据的时间特征,进而提高光伏功率预测精度。然而考虑到时间特征为光伏数据的基础特征而空间特征为隐层特征,因此在建立混合光伏功率预测模型时应考虑首先提取光伏数据的时间特征然后提取光伏数据的空间特征。

f46175dc4d4d6b5006d71f36da69e62f.png

王科俊教授团队在Energy期刊(JCR Q1区,中科院Top期刊,IF=5.537)上发表文章(Volume 189, December 2019, 116225),从光伏数据的机理特征出发提出了基于LSTM-Convolutional网络的光伏功率预测模型,并将其与其他深度预测模型进行了对比,验证了混合模型的连接顺序对光伏功率预测模型精度的影响。

不同模型在不同误差评价指标下的预测误差值

Models

Results

MAE

RMSE

MAPE

SDE

LSTM

0.327

0.709

0.062

0.689

CNN

0.304

0.822

0.058

0.790

CNN-LSTM

0.294

0.693

0.056

0.677

LSTM-CNN

0.221

0.621

0.042

0.635

研究中给出了各误差评价指标下不同模型的误差提升百分比比较结果,验证了所提模型在光伏功率预测上的有效性。

不同模型在不同误差评价指标下的提升百分比比较

LSTM vs. CNN-LSTM

CNN vs. CNN-LSTM

LSTM vs. LSTM-CNN

CNN vs. LSTM-CNN

CNN-LSTM vs. LSTM-CNN

PMAE

10.092%

3.289%

32.416%

27.303%

24.830%

PRMSE

2.257%

15.693%

12.412%

24.453%

10.390%

PMAPE

9.677%

3.448%

32.258%

27.586%

25.000%

PSDE

1.742%

14.304%

7.837%

19.620%

6.204%

论文链接:

https://www-sciencedirect-com-443.wvpn.hrbeu.edu.cn/science/article/pii/S0360544219319206

编辑:吴琦 冯赞元

责任编辑:何东旭

审核:蔡成涛

哈尔滨工程大学自动化学院

2020年6月1日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值