python实现词语相似度计算分析_相似度计算的方法及Python实现

本文介绍了如何使用Python进行词语相似度计算,包括欧几里得相似度、余弦相似度、皮尔逊相似度和曼哈顿相似度等四种方法,通过距离度量来评估两个向量的相似程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6e53ae01fba58162e7934aa855b9eb51.png

现实生活中,我们经常提到距离这个词,本文谈的相似度就是基于距离定义的,当两个向量之间的距离特别小时,就说这俩个向量相似度高,反之相似度不高。所以,衡量相似度的指标就是距离度量。

经常使用的相似度计算公式有:欧几里得相似度、余弦相似度、皮尔逊相似度、曼哈顿相似度。

(1)欧几里得相似度:

88aa9882891d345dbe3695691cff2b7f.png
import numpy as np
def eculidDisSim(x,y):
    '''
    欧几里得相似度
    '''
    return np.sqrt(sum(pow(a-b,2) for a,b in zip(x,y)))
if __name__=='__main__':
    a=np.array([1,2,3])
    b=np.array([6,5,4])
    sim=eculidDisSim(a,b)

(2)余弦相似度:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值