矩阵的分块求逆及解线性方程组
实验3 矩阵的分块求逆及解线性方程组
问题
化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。
实验目的
学会用Matlab语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。
预备知识
线性代数知识:
向量作出的 n 阶范德蒙矩阵为
(2)分块矩阵,其中为方的可逆子块,求逆矩阵有如下公式:
设,则,
(3)常用的矩阵范数为Frobenius范数;
本实验所用Matlab命令提示:
(1)输入语句:input('输入提示');
(2)循环语句:for 循环变量=初始值 :步长 :终值
循环语句组
end
(3)条件语句: if(条件式1)
条件块语句组1
elseif(条件式2)
条件块语句组2
else
条件块语句组3
end
(4)矩阵和向量的范数:norm(A);
(5)求矩阵A的秩:rank(A);
(6)求矩阵A的阶梯型的行最简形式:rref(A)。
实验内容及要求
在建立的sy31.m文件中编程将任意给定的n阶方阵B1,化为上三角矩阵B1;调用时输入:B1=A ,n=6;其A为实验1[矩阵的基本运算]中的矩阵A矩阵;
在建立的sy32.m文件中编程用1~6单位增量的行向量产生一个范德蒙矩阵B2;
在建立的sy33.m文件中编程对任意输入的高阶分块可逆矩阵B3实现分块法求逆;(1)调用sy33.m文件时输入:B3=A^2 ,输入n1=2求出B3的逆C2 ;
(2