分块矩阵求逆 matlab,矩阵的分块求逆及解线性方程组.doc

该博客介绍了如何使用Matlab进行矩阵的分块求逆和解线性方程组。通过实验,读者将学习如何将矩阵转换为上三角形,构建范德蒙矩阵,以及不同分块方法下高阶非奇异矩阵的逆矩阵误差分析。还提供了编程实现的详细步骤,包括矩阵的初等变换、范德蒙矩阵的构造、分块矩阵的逆运算以及非齐次线性方程组的通解求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组

问题

化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。

实验目的

学会用Matlab语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。

预备知识

线性代数知识:

向量作出的 n 阶范德蒙矩阵为

(2)分块矩阵,其中为方的可逆子块,求逆矩阵有如下公式:

设,则,

(3)常用的矩阵范数为Frobenius范数;

本实验所用Matlab命令提示:

(1)输入语句:input('输入提示');

(2)循环语句:for 循环变量=初始值 :步长 :终值

循环语句组

end

(3)条件语句: if(条件式1)

条件块语句组1

elseif(条件式2)

条件块语句组2

else

条件块语句组3

end

(4)矩阵和向量的范数:norm(A);

(5)求矩阵A的秩:rank(A);

(6)求矩阵A的阶梯型的行最简形式:rref(A)。

实验内容及要求

在建立的sy31.m文件中编程将任意给定的n阶方阵B1,化为上三角矩阵B1;调用时输入:B1=A ,n=6;其A为实验1[矩阵的基本运算]中的矩阵A矩阵;

在建立的sy32.m文件中编程用1~6单位增量的行向量产生一个范德蒙矩阵B2;

在建立的sy33.m文件中编程对任意输入的高阶分块可逆矩阵B3实现分块法求逆;(1)调用sy33.m文件时输入:B3=A^2 ,输入n1=2求出B3的逆C2 ;

(2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值