[第1课]
课程简介
习题课说明,各助教露面say hi。
[第2课]
导数的定义
导数定义,仔细讨论导数的定义。
[第3课]
导数的图像
讨论导数的图像。
利用导数使得分段函数保持光滑性。
介绍了求导的一个法则。
多项式函数的求导。
正弦函数和余弦函数的求导。
[第8课]
乘法法则
讨论n个函数情况的乘法法则。
[第9课]
除法法则
用除法法则求正切函数的导数。
[第10课]
链式法则
应用链式法则求包含三个函数的复合函数的导数。
应用线性逼近求隐式函数在某一特定点的值。
应用反函数理论对反正切函数作图。
[第13课]
反余弦函数
求反余弦函数的图像与导数。
通过三个例题强化训练对数和指数的求导方法。
[第15课]
对数法则
四个对数法则及其应用。
[第16课]
双曲三角函数
通过和三角函数的对比,更直观地理解双曲三角函数。
[第17课]
隐函数微分法
应用隐式微分法则求由隐式方程给出曲线上某点的切线。
[第18课]
二次逼近
求复合函数的二次逼近的两种方法。
给出求两个函数乘积在某点的二次逼近的简单方法。
[第20课]
曲线作图
运用导数知识进行曲线作图。
优化问题——求曲线上距离原点最近的点。
优化问题——求过定点的直线与坐标轴围成三角形的最小面积。
[第23课]
最优化表面积
优化问题——对体积固于定圆柱体,求使得表面积最小的半径与高之比。
[第24课]
相对变化率1
对于一个膨胀的球体,求其半径和表面积关于时间的变化率。
[第25课]
相对变化率2
利用微分求瞬时速度。
[第26课]
牛顿法的应用
用牛顿法求方程的近似解。
[第27课]
中值定理1
用中值定理证明tanx>x。
[第28课]
中值定理2
用中值定理证明分析问题。
求一个不连续函数的反微商,并作出其图像。
[第30课]
微分计算
计算多项式和三角函数的微分。
通过微分的方法求√21的近似值
求一个函数的不定积分
应用换元法和“猜想法”求不定积分
[第34课]
微分方程
求解一个无初值条件的微分方程
求满足带有两个初值条件的微分方程的函数
关于求和号使用的三道习题。
[第37课]
黎曼和
利用子区间及相应的左端点估计定积分的值。
用积分就算抛物面所围成立体的体积。
利用积分的黎曼和定义解决实际问题。
用微积分基本定理计算正切函数的定积分。
用两种变量替换的方法解定积分。
应用第二微积分基本定理求函数在定点的值。
求d/dx(∫costdt)[从0到x^2]。
用f表示F(x)=∫f(t)dt[从0到x]的二次逼近。
用积分计算sin和cos在π/4和5π/4之间围成区域的面积。
用积分计算函数y=x^3和y=3x-2围成区域的面积。
用圆盘法求抛物面的体积。
用壳层法求旋转体的体积。
[第49课]
平均速率
利用积分计算变速运动过程中某段时间内的平局速率。
利用积分求给定区域的x坐标的平均值,并计算一个随机点落入给定区域的概率。
Simpson法则中的系数的由来。
利用梯形法则和辛普森法则近似y=sinx在区间[0,π]的积分。
[第53课]
三角积分练习
计算带有三角函数的积分。
用三角积分计算旋转体的体积。
用替换的方法求偶数次幂正切函数的积分。
用双曲三角变量替换计算图形的面积。
用配方法求积分:用配方法求不定积分∫(1/(x^2-8x+1))dx。
[第58课]
部分分式分解
部分分式分解:应用部分分式分解方法将分式化成容易积分的形式。
通过四道分部积分法的习题体会函数u和v'的选取。
求解积分Fn=∫sin^(n)dx。
利用弧长公式计算曲线y=x^(3/2)在[0,4]上的弧长。
通过积分球圆环面的表面积。
播放中
[第63课]参数曲线的弧长
介绍了计算用参数表示的曲线弧长的计算方法。
通过计算两个例子,介绍了极坐标和直角坐标(笛卡尔坐标)的变换。
对r=1+cos(θ/2)进行作图并计算其包围图形的面积。
[第66课]
积分练习1
熟悉积分技巧,包括部分积分法、三角换元等。
[第67课]
积分练习2
熟悉积分技巧,包括对三角函数的积分以及分部积分法。
[第68课]
积分练习3
熟悉积分技巧,包括分部积分法和换元法。
[第69课]
积分练习4
熟悉积分技巧,包括分部积分法、换元法、部分积分法等。
通过一些例子来熟悉洛必达法则的应用。
用例子说明,应用洛必达法则的时候并不是适用于所有情况。
[第72课]
不定式
介绍了几种常见的不定式,特别计算了1^∞型的一个例子。
介绍了令人惊讶的f(x)=1/x绕x轴旋转得到的几何体的结论——体积有限,但截面面积无限。
[第74课]
反常积分
积分学习的深入,介绍了反常积分的概念。
计算x^ne^(-x)的积分。
[第76课]
级数的极限
介绍了级数的敛散性。
[第77课]
比较判别法
介绍了判别级数收敛抑或发散的办法——比较判别法。
[第78课]
比值判别法
介绍了判别级数收敛抑或发散的办法——比值判别法(又名达朗贝尔判别法)。
[第79课]
积分判别法
介绍了判别级数收敛抑或发散的办法——积分判别法。
积分判别法除了可以判别级数的敛散性,还可以作为一种工具估计级数的大小。
[第81课]
收敛半径
利用比值判别法,探究“收敛半径”。
[第82课]
幂级数练习
求解一些幂级数问题。
[第83课]
求解泰勒级数
求解一些函数的泰勒级数。
探究多项式的泰勒级数。
求解sec(x)的泰勒级数。
泰勒级数与积分相结合的联系。
黎曼和作为积分的定义手段,它也是一个无穷级数。