ue4 linux vr yunxing,UE4做的vr游戏怎么运行

本文介绍了在Xcode里对UE4进行调试和分析的详细步骤。包括获取UE4源代码并整合,生成Xcode工程,下载测试工程文件,处理版本转化问题,生成带引擎源码的Xcode项目,设置运行机制和捕获GPU信息,以及进行GPU分析和代码调试等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回答:

要在Xcode里调试或分析,直接下载编辑器是不行的,首先还是要有UE4的源代码,从官方或民间下载都可以,一般是1个UnrealEngine包,2个ReqUIred包,先解压UnrealEngine,再把ReqUIred里的内容分别拖到解压后的UnrealEngine文件夹里,ReqUIred1和ReqUIred2因为有同名文件夹,记得选择keep newer 或 merge(OSX的版本不同),就可以把3个包的内容都拷贝好。然后运行 GeneragteProjectFiles.command,稍等就可以生成出UE4.xcodePRoj的Xcode工程了。

16aea596989974cb2f736e7b7b419930.gif

用Xcode打开工程,直接BUIld UE4Editor,这个过程根据你Mac设备性能的不同可以要10~30分钟

f8ea347e76d037ce99eed0174e8b3647.gif

这个时候你还需要一个进行测试的工程文件,进入MarketPlace,下载这个比较经典的Sun Temple工程好了

8d98289209eac9d425d5edf0c6dfb69d.gif

进入这个页面,下载完成后,就可以创建工程了

a8a0d8b04262a20f384216b929792c7b.gif

如果是编辑器发布的方式,这里打开就可以按官方教材继续修改打包发布了,但如果需要代码做调试和分析的话, 这里可以跳过

86936ff0f1441b2a9c4352fab49d9787.gif

回到我们UE4源代码的Xcode工程,运行编辑器,然后在工程创建页面,会看到在MarketPlace创建的工程文件,选择SunTemple工程进入

abd99aa2df99bd022aa7ce041ff97ae5.gif

如果编辑器和工程版本不一样,可能需要进行版本转化,建议小版本号,如4.5.0~4.5.x可以跳过或再开一份拷贝。

这里还需要注意一点的是,如图下图,你编译出来的UE4Game。在一些版本里可能会是UE4Ggame-ios-DebUG一类的名字,UE4在Xcode或编辑器里打包时调用的是UE4Ggame,否则工程会打包失败

所以可以先在编辑器里打包试试,如果提示找不到UE4Game再进到这个目录改名。

e1206561350711dfc641cbf60cdec684.gif

在官方教程里,提到可以在生成的工程文件.uPRoject上右键选择Generate Xcode Project,但这样生成的Xcode工程是不带任何引擎源码的,无法起到调试作用

bed6cf4eab979e44dec0755c909dece3.gif

正确的方法,应该是先进入编辑器,在File->Package Project的页面里,选择Packaging Setting.

d73da85a91b2bea786375dece9222934.gif

这里可以选择是渲染器使用的图形API是GLES2还是Metal

ae4ede4bfd68b1d4630668e3309097a5.gif

保存,然后选择Refresh Xcode Project,这样就会生成带shader,UE4引擎源码的Xcode项目工程文件了。

dce22ecc1180572db9070e77a947aab1.gif

从工程目录进入SunTemple工程,如图,选择UE4Game-iOS,并在真机上运行,UE4默认的运行机制,其实就是一个统一的UE4Game的前端+资源包的形式

6e74e1352896a2937046d16639aeb4ff.gif

为了能在Xcode上捕获GPU信息,需要进入UE4Game的Scheme里进行设置

a6cfbf5d535b98931c4e2f33bcb4636c.gif

这因为UE4同时支持GLES和Metal的,Xcode无法判断你使用的究竟是哪个API,所以在GPU Frame Capture里必须强制为GLES,才可以成功进行分析。0ee4a6d3ce50ded8b84b747f52f80a32.gif

在真机上运行UE4Game,然后点击到Show the DebUG Navigator的图标,就可以对当前运行UE4 app进行GPU分析了

c62e047b41d54848cca3b4ccc3e79410.gif

点击Analyze按钮后稍等片刻,Xcode会捕获Frame的整个绘制流程,并可通过滑动滑竿来浏览。

966e7f54a6e6d4cd0256e2007c79f24b.gif

同时也可以查看绘制调用部分使用的shader代码,并支持动态修改调试

82e4c8a9d8801eb688fe5dc21da800ff.gif

而DebUG的方式则和平时调试一样,在指定的代码部分放置断点就可以了。

### Qwen2.5运行配置 对于Qwen2.5模型的部署和使用,推荐环境配置如下: - Python版本建议为3.8及以上。 - 安装PyTorch库,考虑到GPU加速的需求,安装CUDA支持版本[^1]。 具体操作可以通过pip命令完成依赖包的安装,在终端输入以下指令来创建并激活虚拟环境以及安装必要的软件包: ```bash conda create -n qwen_env python=3.9 conda activate qwen_env pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 为了加载预训练好的Qwen2.5权重文件,需从指定仓库下载相应资源,并利用Transformers库中的`AutoModelForCausalLM.from_pretrained()`方法实例化模型对象。注意要确保网络连接正常以便顺利获取远程存储的数据集或参数文件。 如果遇到类似于“ValueError: Tokenizer class LlamaTokenizer does not exist or is not currently imported”的错误提示,则表明当前环境中缺少LlamaTokenizer类定义或是导入语句有误。此时应该确认transformers库已正确安装并且版本兼容;另外也可以尝试更新至最新版以获得更好的适配性和修复潜在bug[^3]。 当希望测试Qwen2.5针对结构化数据的理解效果时,可借助魔塔社区提供的JupyterLab平台来进行交互式编程体验。用户可以在该平台上建立新的Python notebook文档,编写代码片段调用API接口实现对表格、图表等内容解析功能[^4]。 ### 常见问题解答 有时可能会碰到内存溢出的情况,这通常是因为所使用的硬件设备显存不足以支撑大规模语言模型运算需求所致。对此可以考虑降低batch size大小或者采用混合精度训练技术减轻负担。 此外还有可能出现因路径设置不当而导致无法读取本地保存的checkpoint等问题。务必仔细检查工作目录下是否存在目标文件夹及其内部结构是否符合预期。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值