PCA因子分析工具:Factor_analysis实战指南

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:因子分析是一种揭示变量间潜在结构和关系的数据分析方法,利用主成分分析(PCA)进行降维。本文将介绍如何使用Python工具“Factor_analysis”进行因子分析,包括标准化数据、计算相关矩阵、求解特征值和特征向量、选择主成分、构造主成分得分和进行旋转的完整过程。同时,本文还会提供对因子载荷符号调整的理解和如何通过业务背景与统计检验来评估因子分析的适用性和效果。
PCA

1. 因子分析概念与应用

1.1 因子分析的定义及重要性

因子分析是统计学中一种用于数据降维的方法,旨在解释变量之间的相关性。通过对大量变量进行因子分析,可以发现影响这些变量背后更少的不可观测变量(即“因子”)。这种方法可以揭示数据中隐藏的结构,对理解复杂数据集的内在关系非常有帮助。

1.2 因子分析的应用场景

因子分析广泛应用于心理学、市场研究、社会科学等领域。它可以帮助研究者在减少数据维数的同时保留大部分信息,还可以用作数据清理的工具,有助于理解观测变量背后的潜在结构。

1.3 因子分析的基本步骤

因子分析主要包括以下步骤:
- 数据收集与预处理 :收集数据并进行标准化处理。
- 确定因子数目 :选择合适的因子数目,可以通过特征值大于1的规则来确定。
- 因子提取 :使用统计软件提取因子。
- 因子旋转 :为了获得更易于解释的因子载荷矩阵,通常采用正交或斜交旋转。
- 因子得分和解释 :计算因子得分,并对因子进行解释和命名。

本章将对因子分析的基本概念进行介绍,并通过后续章节详细解读其数学原理和实际应用,为读者构建起一个完整的知识框架。

2. 主成分分析(PCA)原理

2.1 PCA的基本概念和数学原理

2.1.1 解释多维数据的降维需求

在现代数据分析中,我们经常遇到需要处理多维数据集的情况。然而,并非所有维度都包含有用信息,有的维度可能存在冗余,甚至引入噪声。降维技术如主成分分析(PCA)应运而生,旨在简化数据集的结构,同时保留数据的关键特征和变异性。

降维有助于减少数据的复杂性,使分析更加高效,并且有助于数据可视化。此外,它还能提高机器学习模型的性能,降低过拟合的风险。在多维空间中,数据点往往呈现为椭球形状,而PCA通过正交变换将数据点重新定位在轴上,这些轴称为“主成分”。

2.1.2 主成分分析的数学模型

PCA的数学模型基于数据协方差矩阵的特征值和特征向量。其核心思想是寻找数据中方差最大的方向,这些方向对应于数据的主要变化。

设数据矩阵 X 大小为 n x m ,其中 n 是样本数, m 是特征数。PCA的基本步骤可以描述如下:

  1. 中心化 : 数据中心化是通过减去每个特征的均值,使得数据矩阵的列均值为零。这可以通过以下公式实现:
    [ X_{\text{centered}} = X - \bar{X} ]

其中 X 是原始数据矩阵, \bar{X} 是每列的均值向量。

  1. 协方差矩阵 : 计算中心化数据的协方差矩阵 C ,其公式为:

[ C = \frac{1}{n-1} X_{\text{centered}}^T X_{\text{centered}} ]

  1. 特征值与特征向量 : 对协方差矩阵 C 进行特征分解,得到特征值 \lambda 和特征向量 v

  2. 主成分排序 : 根据特征值的大小对特征向量进行排序,最大的特征值对应的特征向量作为第一个主成分。

  3. 投影 : 将原始数据矩阵 X 投影到选定的主成分上,形成新的低维数据集 Y

代码块示例:

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import numpy as np

# 示例数据
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 中心化数据
scaler = StandardScaler()
X_centered = scaler.fit_transform(X)

# 应用PCA
pca = PCA(n_components=2)  # 选择前两个主成分
X_pca = pca.fit_transform(X_centered)

# 查看主成分的解释方差比率
print(pca.explained_variance_ratio_)

2.2 PCA在数据分析中的作用

2.2.1 数据压缩与特征提取

PCA最直接的应用之一是数据压缩。它通过将数据投影到低维空间,从而减少数据集的存储和计算需求。在新的空间中,每个数据点由较少的特征表示,而这些特征是原始特征的线性组合。

这种压缩是以保留数据的最重要特征为前提的,意味着在压缩的同时,尽可能多地保留了原始数据的方差。通过保留主要成分,PCA使得新特征依然能够代表原始数据的结构和模式。

2.2.2 噪声过滤与数据清晰度提升

另一个重要的应用是噪声过滤。在实际应用中,数据往往包含噪声,这对数据分析和机器学习模型的性能产生负面影响。通过PCA,我们可以识别并去除包含较少信息量的成分,从而过滤掉噪声,提高数据的质量和模型的准确性。

噪声通常与数据中方差较小的成分相关。PCA通过选择贡献较大方差的主成分,自然地排除了噪声。而且,主成分往往是数据中最突出的信号,使得数据的内在结构更加清晰可见。

代码块示例:

import numpy as np
import matplotlib.pyplot as plt

# 创建带噪声的数据
X = np.dot(np.random.rand(2,2), np.random.randn(2,200)).T
X_noisy = X + np.random.randn(*X.shape)

# 应用PCA进行噪声过滤
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_noisy)

# 绘制原始数据和降噪后的数据
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], alpha=0.5, label='Original Data')
ax.scatter(X_pca[:, 0], X_pca[:, 1], alpha=0.5, label='PCA Data')
ax.legend()
plt.show()

在上述例子中,我们创建了带噪声的二维数据,并使用PCA对数据进行了降噪处理。通过PCA后的数据绘图,我们可以明显看到数据变得更加清晰和可辨识。

3. 数据标准化与协方差/相关矩阵计算

3.1 数据标准化的重要性及方法

数据分析过程中,不同变量往往具有不同的量纲和数值范围,直接使用这些变量进行分析可能会导致结果偏向于数值较大的变量。因此,数据标准化是任何数据预处理步骤中的关键步骤,其目的是确保每个变量在分析中被公平对待,从而使结果更具解释性。

3.1.1 标准化前后数据的对比

标准化处理通常包括中心化(减去均值)和规范化(除以标准差)两个步骤,从而使得处理后的数据具有均值为0和标准差为1的特性。例如,对于数据集中的一个变量X,标准化的公式如下:

[ Z = \frac{X - \mu}{\sigma} ]

其中,( \mu )是X的均值,( \sigma )是X的标准差。

3.1.2 标准化方法的选择与应用

在实际应用中,最常用的标准方法是Z分数标准化。此外,根据数据的分布和特性,还可以选择其他标准化方法,如最小-最大标准化、Robust标准化等。选择合适的方法能够提高后续分析的效果,例如在机器学习模型训练中,标准化有助于加快算法的收敛速度。

3.2 协方差与相关矩阵的计算

标准化后的数据可以用来计算协方差矩阵,这一步对于理解变量间的关系至关重要。协方差矩阵捕捉了数据集中变量之间的线性关系,而相关矩阵则进一步标准化了协方差,以反映变量间的相关系数。

3.2.1 协方差矩阵的构建与解读

协方差矩阵是一个对称矩阵,其对角线上的元素是各个变量的方差,非对角线上的元素是两两变量间的协方差。例如,对于变量X和Y,协方差的计算公式如下:

[ \text{Cov}(X,Y) = \frac{\sum (X_i - \mu_X)(Y_i - \mu_Y)}{n-1} ]

其中,( X_i )和( Y_i )是变量X和Y的样本值,( \mu_X )和( \mu_Y )分别是它们的均值,n是样本数量。

3.2.2 相关矩阵与变量间关系分析

相关矩阵通过将协方差除以变量的标准差,进一步标准化得到相关系数,其值范围在-1到1之间。相关系数表示变量间线性关系的强度和方向,接近1表示强正相关,接近-1表示强负相关,接近0表示无线性相关。

应用实例

假设我们有一组股票价格数据,包括股票A和股票B的每日收盘价。我们希望了解这两个变量之间的关系:

import numpy as np
import pandas as pd

# 假设的股票价格数据
data = {
    'stock_a': np.array([50, 51, 52, 53, 54]),
    'stock_b': np.array([100, 101, 102, 103, 104])
}

df = pd.DataFrame(data)
df_std = (df - df.mean()) / df.std()  # Z分数标准化
cov_matrix = df.cov()  # 计算协方差矩阵
corr_matrix = df.corr()  # 计算相关矩阵

print("标准化后的数据:")
print(df_std)
print("\n协方差矩阵:")
print(cov_matrix)
print("\n相关矩阵:")
print(corr_matrix)

执行上述代码,首先得到标准化后的股票价格数据,然后计算得到的协方差矩阵和相关矩阵能够帮助我们了解股票A和股票B价格变化的相关性。

以上方法的分析和代码逻辑展示了如何在数据分析中应用数据标准化和计算协方差/相关矩阵。正确地应用这些步骤对于理解数据集中的变量关系至关重要,也为后续的因子分析打下了坚实的基础。

4. 特征值和特征向量求解

4.1 特征值与特征向量的数学意义

4.1.1 特征值与方差解释

在多维数据集的上下文中,特征值描述了一个线性变换之后数据的方差程度,代表了在新空间中,数据在某个方向上的扩展或收缩程度。数学上,对于一个方阵A,如果存在一个非零向量v和一个标量λ,使得Av=λv,则称v为A的一个特征向量,λ为对应的特征值。

例如,在数据压缩的场景中,特征值可以告诉我们哪些方向是数据变异最大的方向,因此,它们在解释数据总体方差方面起着决定性作用。在主成分分析中,特征值较大的特征向量可以解释更多的数据变异性,因此,当我们试图用更少的维度来表示数据时,我们通常会保留那些与较大特征值相关联的特征向量。

4.1.2 特征向量与数据结构的关联

特征向量与数据结构有着密切的联系。在一个数据集中,不同的特征向量捕捉到数据的不同结构特征。具体来说,每个特征向量都代表了一个新的维度,这个新的维度是原始数据多个变量的线性组合。在这些新的维度中,我们可以发现原始数据中可能不容易观察到的模式或结构。

例如,在金融领域,某个特征向量可能代表了市场风险的特定成分,它可能将多个相关的金融指标结合起来,形成一个衡量市场风险的新指标。因此,通过分析特征向量,研究者可以对数据的潜在结构有更深入的理解。

4.2 求解特征值和特征向量的方法

4.2.1 矩阵对角化与特征值分解

矩阵对角化是求解特征值和特征向量的一种常见方法。对角化的基本思想是找到一个可逆矩阵P,使得P^-1AP是一个对角矩阵,对角线上的元素就是矩阵A的特征值。矩阵对角化在很多数学和工程问题中都有应用,特别是在求解线性微分方程组时。

特征值分解是另一种求解特征值和特征向量的方法,适用于任何方阵。当我们对一个矩阵进行特征值分解时,我们会得到一个特征值分解形式A = QΛQ^-1,其中Q是包含A的所有特征向量的矩阵,而Λ是对角线上有A所有特征值的对角矩阵。这个方法可以让我们很清晰地看到矩阵的特征值和特征向量。

4.2.2 数值方法在特征值求解中的应用

对于大型矩阵而言,解析求解特征值和特征向量往往是计算上非常密集的任务,这时我们需要借助数值方法,如幂法、反迭代法或者QR算法等。这些方法是通过迭代的方式逐步逼近矩阵的真实特征值和特征向量。

例如,幂法是一种迭代算法,它通过不断乘以一个初始向量来逐步逼近矩阵的主特征值和特征向量。QR算法则是将矩阵分解成一个正交矩阵Q和一个上三角矩阵R的乘积,然后通过迭代来逼近对角矩阵,对角线上就是特征值。在实际应用中,这些数值方法通常借助于计算库来实现,如NumPy或SciPy中的eig函数等。

import numpy as np

# 示例:计算NumPy矩阵的特征值和特征向量
A = np.array([[1, 2], [3, 4]])
eigenvalues, eigenvectors = np.linalg.eig(A)

print("特征值:", eigenvalues)
print("特征向量:", eigenvectors)

在上述代码块中,我们使用了NumPy库中的 linalg.eig 函数来计算给定矩阵A的特征值和特征向量。这是一个非常实用的工具,可以轻松处理小型到中型矩阵的特征值问题。对于更大的矩阵,我们可能需要更专业的库,如SciPy中的稀疏矩阵处理和特殊矩阵分解算法。

5. 主成分选择与数据投影

在第五章中,我们将深入探讨如何选择主成分以及如何将数据投影到新的主成分空间中。本章节的目的是让读者理解主成分选择的重要性,并掌握将数据映射到主成分空间的技术,以便进行后续的数据分析和可视化。

5.1 主成分选择的标准与策略

主成分分析的核心在于识别和选择那些最能代表数据集信息的主成分。这一过程对于降维后的数据质量和分析效果至关重要。

5.1.1 方差贡献率与累计方差贡献率

每个主成分都对应一个特征值,特征值的大小反映了该主成分解释数据集方差的能力。方差贡献率是指单个主成分解释的方差占总方差的比例。累计方差贡献率则是前几个主成分的方差贡献率之和,它表示这些主成分共同解释的数据集方差比例。

例如,如果我们有一个数据集并提取了五个主成分,第一个主成分可能解释了总方差的40%,第二个主成分解释了20%,以此类推。累计方差贡献率就是这些数值的累加结果,比如前三个主成分可能累计解释了总方差的70%。

选择主成分时,累计方差贡献率是一个重要的衡量标准。通常,我们会选择那些使得累计方差贡献率达到一定阈值(如85%或90%)的主成分,以确保降维后数据损失最小。

5.1.2 主成分个数的确定方法

确定保留多少个主成分需要一种平衡的策略。一方面,保留较少的主成分意味着更多的数据压缩和解释的简化;另一方面,过少的主成分会导致过多的数据信息丢失。选择主成分的常见方法有:

  • 碎石图(Scree Plot)分析 :通过绘制每个主成分特征值的图表,直观地识别特征值的斜率减缓点,斜率减缓点之前的主成分通常是被选择的对象。
  • 累积方差贡献率阈值法 :设定一个累积方差贡献率的目标值,比如85%,然后选择累计方差贡献率达到这个阈值的最小主成分集合。
  • 交叉验证法 :通过保留一部分数据作为测试集,检查保留不同数量主成分时模型的预测能力,选择预测效果最好的主成分数量。

理解这些方法对选择合适的主成分至关重要。

5.2 数据投影与新空间的构建

一旦我们确定了哪些主成分是必要的,下一步就是将数据投影到这些选定的主成分构成的新空间中。

5.2.1 数据到主成分空间的投影

数据投影的过程是将原始数据的每个观测点转换到选定的主成分坐标系中。这通常通过计算原始数据矩阵与主成分矩阵的乘积来完成,其中主成分矩阵是由选定的主成分特征向量构成的。

例如,原始数据矩阵 X 的大小为 n x p (n个观测点,p个变量),选定的主成分特征向量构成的矩阵 P 的大小为 p x k (p个原始变量,k个选定的主成分),那么投影后的数据矩阵 Y 将是 n x k 的大小,计算公式为:

Y = X \cdot P

这个运算实际上是将每个观测点在选定的主成分上的坐标值提取出来,形成新的数据矩阵。

5.2.2 新空间的数据解释与可视化

投影到新空间后,数据将仅在选定的主成分方向上变化,而这些主成分是可以解释的。每个主成分代表数据的一个主要变化方向,数据在这些方向上的投影能够揭示数据的潜在结构和模式。

将数据投影到二维或三维空间中,可以帮助我们以直观的方式展示和解释数据。例如,我们可以使用散点图将数据投影到前两个主成分构成的平面上,从而观察不同类别的数据点是否能够被有效区分。

代码示例

from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

# 假设X是已经标准化的原始数据矩阵
pca = PCA(n_components=2)  # 选择两个主成分
X_pca = pca.fit_transform(X)  # 数据投影

# 可视化投影结果
plt.scatter(X_pca[:, 0], X_pca[:, 1])  # 绘制散点图
plt.title('PCA Projection')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.show()

在上述代码中,我们使用了 sklearn 库中的PCA类来执行主成分分析,然后将数据投影到前两个主成分构成的二维空间中,并使用散点图进行了可视化。

参数说明:
- n_components=2 :表示我们想要保留的主成分数量。
- fit_transform(X) :这是PCA类的核心方法,首先拟合数据以找出主成分,然后将数据投影到这些主成分上。

通过这种方式,我们可以将复杂的数据结构简化为少数几个主成分,从而实现数据的有效可视化和进一步的分析。

最终,本章介绍了如何通过方差贡献率和累计方差贡献率来确定主成分个数,以及如何将数据投影到新的主成分空间中并进行可视化。通过这些方法,我们能够将高维数据简化并以更直观的方式展示数据的结构和模式。

6. 旋转方法及因子载荷调整

6.1 旋转方法的选择与应用

6.1.1 正交旋转与斜交旋转的区别

在因子分析中,旋转是一种重要的技术,用于改善因子解的可解释性。正交旋转假设因子之间是不相关的,而斜交旋转允许因子之间有一定的相关性。正交旋转的典型方法包括方差最大化(Varimax)和等量(Equamax)旋转。这些方法在不同的因子之间寻求最大程度的独立性,使得每个因子只解释尽可能少的变量的方差。

斜交旋转,如Promax旋转,允许因子之间存在相关性,并试图最大化因子载荷的简单结构。它们通常用于因子之间存在一定程度关联的实际应用中。选择正交旋转还是斜交旋转取决于研究者对因子间关系的预期和数据的性质。

6.1.2 旋转方法对因子结构的影响

旋转方法的选择直接影响因子的结构和解释。选择适当的旋转方法可以使得因子载荷矩阵更容易解释,每个因子与某些变量强相关,而与其他变量的关联较弱。这意味着每个变量主要由少数几个因子解释,而不是分散在所有因子上,从而提高了结果的清晰度。

在旋转过程中,一个关键的考量是如何确定因子数量,因为不同的旋转方法可能会对最终的因子数量有影响。通常,研究者会使用如Scree图这样的工具来辅助确定因子的数量,然后选择相应的旋转方法。

6.2 因子载荷的解释与调整

6.2.1 因子载荷矩阵的意义

因子载荷矩阵显示了各变量与各因子之间的相关性。因子载荷可以被视为变量和因子之间关系的强度指标。一个大的因子载荷(正或负)意味着相应的变量与因子紧密相关,而接近于零的因子载荷表明变量与因子之间的关系较弱。

因子载荷矩阵是因子分析结果解释的核心,因为它们可以帮助研究者确定哪些变量与每个潜在的因子相关联,从而对潜在因子的性质进行描述。因子载荷矩阵的清晰度直接影响到对因子分析结果的理解。

6.2.2 载荷调整的方法与实践

载荷调整通常涉及两步:首先是旋转,其次是载荷的解读和调整。旋转方法如Varimax寻求简化载荷矩阵,使得每个变量在尽可能少的因子上有高载荷。在旋转之后,研究者将检查旋转后的因子载荷矩阵,以确定哪些变量与特定的因子相关,并据此对因子进行命名和解释。

在某些情况下,可能需要进行手动调整,以确保每个因子的解释是合理的。例如,如果两个变量在同一个因子上的载荷都很高,但它们与该因子的概念含义不符,研究者可能会寻找其它旋转方法或考虑因子解的其他方面来改善解释。

flowchart TB
    A[因子分析结果] -->|旋转| B[旋转后的因子载荷矩阵]
    B -->|解读| C[变量与因子关联]
    C -->|调整| D[手动调整因子载荷]
    D --> E[优化因子结构]
    E --> F[因子命名与最终解释]

在实践中,因子载荷调整和旋转后因子结构的优化可能会多次迭代进行,直到得到一个既满足统计标准又具有合理解释的因子模型。

import pandas as pd
from sklearn.decomposition import FactorAnalysis

# 假设df是一个包含标准化数据的DataFrame
# 进行因子分析
fa = FactorAnalysis()
fa.fit(df)

# 旋转因子载荷矩阵以改善可解释性
# 这里使用Varimax旋转
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

# 标准化数据
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df)

# 应用PCA并旋转因子载荷
pca = PCA(n_components=3, svd_solver='full')  # 选择主成分数量
pca.fit(scaled_data)
V = pca.components_.T

# Varimax旋转
from factor_analyzer import FactorAnalyzer
fa = FactorAnalyzer(rotation='varimax')
fa.fit(V)
rotated_V = fa.loadings_

# 使用旋转后的载荷进行解释
# 此处省略了变量与因子关联、调整和命名的步骤

在这个例子中,代码展示了如何利用Python的 FactorAnalyzer 库来执行因子分析,其中使用了Varimax旋转来改善因子载荷的简单结构。需要注意的是,实际中因子载荷的调整和解释需要结合具体领域的知识和对数据的深入了解,代码仅能提供一个旋转因子载荷矩阵的基础框架。

7. Factor_analysis工具介绍与应用

7.1 Factor_analysis工具概述

7.1.1 工具的功能与特点

Factor_analysis是一个强大的统计分析工具,它提供了从数据分析到结果解释的一站式解决方案。这个工具具有以下功能和特点:

  • 多元数据降维 :能够自动识别并提取数据中的主要成分,减少数据集维度。
  • 直观的用户界面 :提供图形用户界面,便于用户操作和理解分析流程。
  • 高度的可定制性 :允许用户自定义因子旋转方法、因子提取方法等参数。
  • 自动化统计检验 :内置KMO和Bartlett检验等统计检验工具,可以评估因子分析的适用性。
  • 结果可视化 :自动生成旋转后的因子载荷图,帮助用户快速理解各变量与因子之间的关系。
  • 与现有软件兼容性 :能够读取多种格式的数据文件,如CSV、Excel、SPSS等,并能够输出分析结果至多种格式。

7.1.2 工具与PCA的关系

Factor_analysis工具与主成分分析(PCA)有着密切的联系。PCA可以看作是因子分析的一个特例,特别是在没有考虑误差项的简化模型中。两者的主要区别在于:

  • 目的性 :PCA主要聚焦于数据降维,而因子分析旨在识别不可观测的潜在变量(因子)。
  • 误差处理 :因子分析考虑了观测变量中不能被公共因子解释的部分(特异性),而PCA通常不涉及。
  • 数据解释 :因子分析更适合解释变量间的关联性,而PCA更侧重于变量的结构简化。

7.2 实际应用案例分析

7.2.1 数据预处理与分析流程

为了更好地理解Factor_analysis工具的实际应用,我们可以通过一个虚构的案例进行分析。假设我们拥有一组关于顾客满意度的调查数据,数据包含若干个调查项,例如产品质量、服务态度、价格合理度等。我们希望通过因子分析探索背后的潜在结构。

数据预处理步骤包括:

  1. 数据清洗 :去除缺失值和异常值。
  2. 数据转换 :对定性数据进行编码转换,使其成为适合进行因子分析的数值数据。
  3. 数据标准化 :将数据标准化处理,确保每个变量在分析中有相同的权重。

完成数据预处理后,进入因子分析流程:

  1. 构建因子分析模型 :选择合适的因子提取方法(如主成分法)。
  2. 因子旋转 :应用正交旋转或斜交旋转,以简化因子结构和提高结果的可解释性。
  3. 选择主成分 :根据特征值大于1的标准或累计方差贡献率来决定主成分的数量。
  4. 因子得分计算 :计算出每个观测数据在提取因子上的得分。
  5. 结果可视化 :通过旋转后的因子载荷图展示各变量与因子之间的关系。

7.2.2 结果解读与实际业务的结合

一旦我们获得了因子分析的结果,下一步就是对结果进行解读并将其应用到实际业务中。解读结果包括:

  • 因子载荷 :分析每个因子上的高载荷变量,解释因子的实际含义。
  • 因子得分 :利用因子得分进行进一步的分析,如顾客满意度的聚类分析。
  • 业务策略制定 :根据因子分析结果,调整产品特性、服务流程或定价策略,提升顾客满意度。

结合实际业务,企业可以:

  • 市场细分 :基于顾客满意度的不同维度,对市场进行细分,制定差异化的市场策略。
  • 产品优化 :根据主要因子的影响程度,调整产品设计和服务流程,以满足顾客需求。
  • 决策支持 :将因子分析结果作为决策支持的一部分,辅助企业在市场、产品、服务等方面做出更合理的决策。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:因子分析是一种揭示变量间潜在结构和关系的数据分析方法,利用主成分分析(PCA)进行降维。本文将介绍如何使用Python工具“Factor_analysis”进行因子分析,包括标准化数据、计算相关矩阵、求解特征值和特征向量、选择主成分、构造主成分得分和进行旋转的完整过程。同时,本文还会提供对因子载荷符号调整的理解和如何通过业务背景与统计检验来评估因子分析的适用性和效果。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值