python实现遗传算法求解tsp旅行商问题(详细解释)_用遗传算法解旅行商问题(Python版)...

本文介绍了旅行商问题(TSP),一个著名的组合优化问题,并探讨了使用遗传算法来寻找近似最优解的方法。通过Python代码实现遗传算法,详细解释了编码、评价等关键步骤,并展示了算法在不同代数下的效果。运行程序,可以观察到随着进化,解的质量逐渐提高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

旅行商问题(Travelling Salesman Problem,即TSP问题)是数学领域中著名问题之一。假设有一个旅行商人要拜访 n 个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。

TSP 问题是一个组合优化问题,也是一个 NP 完全问题,使用通常的解法往往需要耗费大量的时间,不过我们也可以使用遗传算法,在较短的时间里找到一个可接受(不一定是最优)的解。

下面是我的代码,一共有三个文件,分别为 TSP.py、GA.py、Life.py。

运行 TSP.py,即可开始程序。几个快捷键说明如下:

n: 开始新的计算(随机产生32个新的城市)

e: 开始进化

s: 停止

q: 退出

程序没有设置终止进化条件,进化一旦开始,如果不手动停止,会一直计算下去。

遗传算法主要是一种思想,并没有很具体的代码,在解决大多数问题时,最难解决的部分主要是编码(如何将问题转化为合适的方便操作的“基因”)、评价(如何评价各个“基因”的得分)部分。在本例中,我们将城市的顺序做为基因编码,路径总长度的倒数为基因的得分。这种做法不一定是最好的,不过是有效的。

下面是我运行时的一次截图:

20d5bd8de36fda3d9eacce4ace18df09.png

初始状态。

fed1e69311cfc5750177ba2bf0a94a0b.png

第153代。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值