关于LINUX的NVIDIA显卡驱动安装

本文详细介绍了在Linux环境下,特别是CentOS 5.4×86_64系统中,如何安装和配置NVIDIA显卡驱动程序。包括下载匹配驱动、测试显卡速度、关闭X-Window、安装驱动、更新配置文件等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

LINUX中已经集成了一些组件的相关驱动,但是随着机器相关组件芯片不断更新,相应的驱动程序也在不断的更新,LINUX中集成的驱动程序难免有些不能满足需要,其最突出的问题,莫过于NVIDIA的显卡驱动程序。

在当今视频显示芯片领域,随着3D图形显示芯片的激烈市场竞争,S3、3Dfx、Matrox 、Trident等一些老牌3D显示芯片生产厂商已经渐渐退出了市场。nVIDIA、ATi、Intel三家生产厂商占有95%以上的市场份额。

在Linux安装3D显卡的驱动是有一定难度的。升级Linux驱动程序需要做一系列的决定,包括正确识别处理器配置状况,查明驱动程序工作在什么样的Linux内核当中。

在Linux中使用的图形显示系统是X-Window,但是由于与常见的MS Windows系统有很大的差异,所以在使用时,即使有时面对的是很小的问题,却不知才能如何解决,比如无法驱动显卡,显示器参数错误,花屏,图形界面无法启动等。这里首先向大家讲述,X-Window的概述,如何安装主流3D显卡的驱动程序,相关的配置文件,以及参数调整等内容。本文应用环境是Cent OS 5.4 ×86_64(即 Red Had Enterprise Linux 版本 ,其内核版本为2.6.18(内核版本查看方法,在终端下,输入uname -a ,可能需要管理员帐户)。

注:以下操作都是在管理员帐户下进行的。

1 首先从NVIDIA官方网站,下载与系统相匹配的驱动程序。

测试安装3D驱动程序前的显卡速度,在打开的终端下输入#glxgears,运行见下图:

  

glxgears是一个测试你的Linux是否可以顺利运行2D、3D的测试软件,这个程序弹出一个窗口,里面有三个转动的齿轮。屏幕将显示出每五秒钟转动多少栅,所以这是一个合理的性能测试。窗户是可以放缩的,栅数多少极大程度上依赖于窗口的大小。如果你的显示卡够好,而且你的驱动程序也配合得很好,那齿轮就跑得越快。有些极品显卡(SLI 6800 Ultra)执行glxgears之后,快到连齿轮都看不清。这里请记录下FPS数字(每秒的帧速度)以鉴别3D加速效果。

 

3 开始安装,关闭X-Window,在XServer下,输入“init 3”或者“Ctrl+shift+Backspace”,进入纯终端环境下。

4 root 登录。

 

 

 

5 cd 路径切换到相应文件夹下。可以直接将驱动文件放在root文件夹中,方便,省得用cd 命令查找。

ls 命令查看 NVIDIA……run文件。

输入sh NVIDIA……run -a ,系统提示“当前LINUX系统没有对应内核头文件”,提示“是否进行下载?”,选择"NO ",回车。

 

 

8 以下一路回车OK

 

没有预编译内核接口,程序将自动创建新的,选择“YES”。

 

 

9 安装完成,提示:是否运行Nvidia显卡配置工具来自动更新 xorg.conf文件(Linux显卡配置文件),选择 Yes ”,回车

 

 

 

10 提示更新 Xorg.conf 文件成功,回车。

11 这样驱动已完成安装。

      a 输入 start x ,返回X-Window 环境。

      b 输入 reboot ,重新启动。

12 验证是否安装成功,回到X-Window 环境下 ,如果兼容没问题的话,就可以顺利进入桌面,这时候你会发现分辨率已经不是以前的样子了。

13 在“应用程序/首选项”(可能因环境不同而位置不同)有Nvidia X Server Settings 选项,可以自己配置。

祝你成功!

转载于:https://www.cnblogs.com/caoqin_414/archive/2010/04/08/1707491.html

### LinuxNVIDIA 显卡驱动、CUDA 和 cuDNN 的安装教程 #### 1. 安装 NVIDIA 显卡驱动Ubuntu安装 NVIDIA 显卡驱动可以通过图形界面完成,也可以通过命令行操作。推荐方法如下: - 打开 *软件和更新* 中的 *附加驱动* 页面,在可用选项中选择带有 `NVIDIA` 字样的驱动程序并应用更改[^2]。 如果需要手动安装或者禁用默认的 Nouveau 驱动,则可以执行以下步骤: ```bash sudo apt update sudo apt install linux-headers-$(uname -r) sudo modprobe -r nouveau && sudo bash -c "echo blacklist nouveau > /etc/modprobe.d/blacklist-nouveau.conf" sudo reboot ``` 重启后下载对应版本的 NVIDIA 驱动包,并运行安装脚本[^3]: ```bash chmod +x NVIDIA-Linux-x86_64-version.run sudo ./NVIDIA-Linux-x86_64-version.run ``` #### 2. 升级或安装 CUDA 工具包 为了确保兼容性和性能优化,建议先确认已安装NVIDIA 驱动版本是否支持目标 CUDA 版本。 对于特定版本如 CUDA 10.1 可以按照官方文档说明进行配置[^1]。通常情况下可通过 APT 或者本地 RUN 文件两种方式实现安装过程。APT 方法较为简便: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntuXX/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda-10-1 ``` 完成后记得设置环境变量以便后续调用工具链正常工作: ```bash export PATH=/usr/local/cuda-10.1/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64:$LD_LIBRARY_PATH source ~/.bashrc ``` #### 3. 配置 cuDNN 库文件 cuDNN 是针对深度学习框架加速而设计的一套高性能库集合。其依赖于基础 CUDA 平台之上构建而成。获取合法授权后的 cuDNN 压缩档需解压到指定目录下覆盖原有内容: 假设当前路径存在 tar.gz 形式的压缩包形式: ```bash tar zxvf cudnn-X-linux-x64-vY.Y.ZZ.tgz sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 最后验证整个流程无误可尝试编译示例项目来检测功能完整性。 ```python import tensorflow as tf print(tf.test.is_built_with_cuda()) # 输出 True 表明成功启用GPU计算能力 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值