机器学习进阶-案例实战-图像全景拼接-书籍SIFT特征点连接 1.cv2.drawMatches(对两个图像的关键点进行连线操作)...

本文详细介绍了如何使用SIFT算法进行特征点检测与描述,并通过OpenCV实现图像匹配,包括关键点检测、特征向量计算、蛮力匹配及结果可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2)  # 对两个图像关键点进行连线操作

参数说明:imageA和imageB表示图片,kpsA和kpsB表示关键点, matches表示进过cv2.BFMatcher获得的匹配的索引值,也有距离, flags表示有几个图像

书籍的SIFT特征点连接:

   第一步:使用sift.detectAndComputer找出关键点和sift特征向量

   第二步:构建BFMatcher()蛮力匹配器,bf.match匹配sift特征向量,使用的是欧式距离

   第三步:根据匹配结果matches.distance对matches按照距离进行排序

   第四步:进行画图操作,使用cv2.drawMatches进行画图操作

import cv2
import numpy as np

#读入图片
imgA = cv2.imread('box.png', 0)
imgB = cv2.imread('box_in_scene.png', 0)




def cv_show(img, name):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 第一步:构造sift,求解出特征点和sift特征向量
sift = cv2.xfeatures2d.SIFT_create()
kpsA, dpA = sift.detectAndCompute(imgA, None)
kpsB, dpB = sift.detectAndCompute(imgB, None)

# 第二步:构造BFMatcher()蛮力匹配,匹配sift特征向量距离最近对应组分
bf = cv2.BFMatcher()
# 获得匹配的结果
matches = bf.match(dpA, dpB)

#第三步:对匹配的结果按照距离进行排序操作
matches = sorted(matches, key=lambda x: x.distance)

# 第四步:使用cv2.drawMacthes进行画图操作
ret = cv2.drawMatches(imgA, kpsA, imgB, kpsB, matches[:10], None, flags=2)

cv2.imshow('ret', ret)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

转载于:https://www.cnblogs.com/my-love-is-python/p/10422152.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值