每日一个机器学习算法——LR(逻辑回归)

本文汇集了数学公式和算法优化的关键知识点,从基本概念如假设和sigmoid函数开始,深入探讨了假设的意义、性质,以及如何找到凸损失函数。通过最大似然估计推导出单个样本的正确预测概率,并展示了如何将其合并表示。进一步介绍了从原始梯度下降法到高级优化方法如共轭梯度、BFGS和L-BFGS的演进过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本系列文章用于汇集知识点,查漏补缺,面试找工作之用。数学公式较多,解释较少。

1.假设

2.sigmoid函数:

3.假设的含义:

4.性质:

5.找一个凸损失函数

6.可由最大似然估计推导出

单个样本正确预测的概率为

只是3两个式子合并在一起的表示方法

整个样本空间的概率分布为

取对数展开得,

作为损失函数,并且最小化它,则应改写为5式。

7.求解方法

最原始的方法,梯度下降法

先求导,并带入sigmoid表达式得

之后,参数更新为:

终止条件:

目前指定迭代次数。后续会谈到更多判断收敛和确定迭代终点的方法。

8.高级方法

共轭梯度

BFGS,L-BFGS

 

转载于:https://www.cnblogs.com/ShaneZhang/p/3917917.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值