CUDA使用Event进行程序计时

本文介绍如何使用CUDA编程语言在NVIDIA显卡上通过Event对象精确测量GPU任务的运行时间,包括代码示例和编译执行过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPGPU是众核设备,包含大量的计算单元,实现超高速的并行。

使用CUDA在nvidia显卡上面编程时,可以使用CUDA提供的Event进行程序计时。

当然,每种编程语言基本都提供了获取系统时间的函数,如C/C++/Java 程序计时功能函数

Event可以统计GPU上面某一个任务或者代码段的精确运行时间。

如下面的程序实例(CalTime.cu):

 1 #include<stdio.h>
 2 #include<cuda_runtime.h>
 3 
 4 //__global__声明的函数,告诉编译器这段代码交由CPU调用,由GPU执行
 5 __global__ void mul(int *dev_a,const int NUM)
 6 {
 7     int idx = blockIdx.x * blockDim.x + threadIdx.x;
 8     int dis=blockDim.x * gridDim.x;
 9     while(idx<NUM)
10     {
11         dev_a[idx]=dev_a[idx]%23*dev_a[idx]*5%9;
12         idx+=dis;
13     }
14 }
15 
16 int main(void)
17 {
18     const int thread_pre_block = 64;    //每个block的线程数量
19     const int block_pre_grid = 8;    //grid中的block数量
20     const int NUM = 45056;
21 
22     //申请主机内存,并进行初始化
23     int host_a[NUM];
24     for(int i=0;i<NUM;i++)
25         host_a[i]=i;
26 
27     //定义cudaError,默认为cudaSuccess(0)
28     cudaError_t err = cudaSuccess;
29 
30     //申请GPU存储空间
31     int *dev_a;
32     err=cudaMalloc((void **)&dev_a, sizeof(int)*NUM);
33     if(err!=cudaSuccess)
34     {
35         perror("the cudaMalloc on GPU is failed");
36         return 1;
37     }
38 
39     //将要计算的数据使用cudaMemcpy传送到GPU
40     cudaMemcpy(dev_a,host_a,sizeof(host_a),cudaMemcpyHostToDevice);
41 
42     dim3 threads = dim3(thread_pre_block);
43     dim3 blocks  = dim3(block_pre_grid);
44 
45     //使用event计算时间
46     float time_elapsed=0;
47     cudaEvent_t start,stop;
48     cudaEventCreate(&start);    //创建Event
49     cudaEventCreate(&stop);
50 
51     cudaEventRecord( start,0);    //记录当前时间
52     mul<<<blocks, threads, 0, 0>>>(dev_a,NUM);
53     cudaEventRecord( stop,0);    //记录当前时间
54 
55     cudaEventSynchronize(start);    //Waits for an event to complete.
56     cudaEventSynchronize(stop);    //Waits for an event to complete.Record之前的任务
57     cudaEventElapsedTime(&time_elapsed,start,stop);    //计算时间差
58 
59     cudaMemcpy(&host_a,dev_a,sizeof(host_a),cudaMemcpyDeviceToHost);    //计算结果回传到CPU
60 
61     cudaEventDestroy(start);    //destory the event
62     cudaEventDestroy(stop);
63     cudaFree(dev_a);//释放GPU内存
64     printf("执行时间:%f(ms)\n",time_elapsed);
65     return 0 ;
66 }

编译执行代码:

  

<think>我们正在讨论PyTorch中的`torch.cuda.Event`。根据用户的问题,他们想了解`tr.cuda.event`的定义和用法,但这里可能有一个拼写错误。在PyTorch中,正确的写法是`torch.cuda.Event`(注意大小写)。因此,我们将解释`torch.cuda.Event`。###1.定义`torch.cuda.Event`是PyTorchCUDAAPI中的一个类,它代表CUDA流中的一个事件。事件主要用于**同步**CUDA流中的操作,也可以用来记录时间(测量操作的执行时间)[^1]。事件的主要用途包括:-同步设备(device)和主机(host)之间的操作-同步不同流(stream)之间的操作-记录时间戳,用于性能分析(profiling)###2.创建事件可以使用以下方式创建一个事件:```pythonevent=torch.cuda.Event()```默认情况下,事件不会记录时间戳(即`enable_timing=False`),并且不会阻塞主机(`blocking=False`)。如果需要记录时间,可以在创建时指定:```pythonevent=torch.cuda.Event(enable_timing=True)```###3.主要方法-**`record(stream=None)`**:在指定的CUDA流中记录事件。如果未指定流,则使用当前流。-**`wait(stream=None)`**:使指定的流等待该事件完成。如果未指定流,则使用当前流。-**`synchronize()`**:阻塞主机直到该事件完成。-**`elapsed_time(end_event)`**:计算两个事件之间的时间间隔(以毫秒为单位)。注意:两个事件必须已经完成,并且都设置了`enable_timing=True`。###4.使用示例####示例1:测量两个操作之间的时间```pythonimporttorch#创建两个事件(启用计时)start_event=torch.cuda.Event(enable_timing=True)end_event=torch.cuda.Event(enable_timing=True)#记录开始事件start_event.record()#执行一些操作(例如:矩阵乘法)a=torch.randn(10000,10000,device='cuda')b=torch.randn(10000,10000,device='cuda')c=a@b#记录结束事件end_event.record()#等待事件完成(因为CUDA操作是异步的)end_event.synchronize()#计算时间差(毫秒)elapsed_time=start_event.elapsed_time(end_event)print(f"Timetaken:{elapsed_time}ms")```####示例2:使用事件进行流同步假设有两个流,我们希望流2中的操作在流1中的某个操作完成后开始:```pythonstream1=torch.cuda.Stream()stream2=torch.cuda.Stream()#在流1中创建事件event=torch.cuda.Event()withtorch.cuda.stream(stream1):#在流1中执行一些操作a=torch.randn(10000,10000,device='cuda')#记录事件event.record()withtorch.cuda.stream(stream2):#流2等待事件完成event.wait()#然后执行操作b=torch.randn(10000,10000,device='cuda')```###5.注意事项-事件只能在创建它们的设备(GPU)上使用。-如果事件用于计时,则必须确保两个事件都已完成(通过`synchronize()`)才能调用`elapsed_time`。-事件对象不能被重复使用(即一个事件只能记录一次)。如果需要再次记录,应创建新的事件。###引用说明以上内容参考了PyTorch官方文档[^1]和CUDA编程最佳实践[^2]。§§相关问题§§1.PyTorch中如何测量CUDA核函数的执行时间?2.如何在多个CUDA流之间进行同步?3.除了`torch.cuda.Event`,还有哪些PyTorch工具可以用于性能分析?</think>### PyTorch `torch.cuda.Event` 详解 `torch.cuda.Event` 是 PyTorch 提供的 CUDA 事件工具,用于**精确测量 GPU 操作耗时**和**同步 CUDA 流**。它本质上是 CUDA 事件的 Python 封装,常用于性能分析和异步操作管理[^1]。 #### 1. **核心功能** - ⏱️ **时间测量**:精确记录 GPU 操作的时间戳(毫秒级精度) - 🔁 **流同步**:协调不同 CUDA 流之间的执行顺序 - 📊 **性能分析**:测量核函数、数据传输等操作的执行时间 #### 2. **基本用法** ```python import torch # 创建事件(启用计时功能) start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) # 记录事件时间点 start_event.record() # 插入到当前默认流 # 执行GPU操作(示例:大型矩阵乘法) a = torch.randn(10000, 10000, device='cuda') b = torch.randn(10000, 10000, device='cuda') c = a @ b # GPU矩阵乘法 # 记录结束事件 end_event.record() # 等待事件完成(必须同步才能获取时间) end_event.synchronize() # 计算耗时(毫秒) elapsed_time = start_event.elapsed_time(end_event) print(f"GPU操作耗时: {elapsed_time:.2f} ms") ``` #### 3. **关键方法说明** | 方法 | 作用 | 注意事项 | |------|------|----------| | `.record(stream=None)` | 在指定流中插入事件 | 默认使用当前流 | | `.synchronize()` | 阻塞CPU直到事件完成 | **必须调用才能获取有效时间** | | `.elapsed_time(end_event)` | 计算两个事件间耗时 | 需启用`enable_timing=True` | | `.wait(stream)` | 使指定流等待该事件完成 | 用于流间同步 | #### 4. **实际应用场景** 1. **性能分析**: ```python def measure_gpu_op(): start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() # 待测GPU操作 result = complex_model(input_data) end.record() end.synchronize() return start.elapsed_time(end), result ``` 2. **多流同步**: ```python stream1 = torch.cuda.Stream() stream2 = torch.cuda.Stream() with torch.cuda.stream(stream1): # 流1的操作 event = torch.cuda.Event() event.record() with torch.cuda.stream(stream2): event.wait() # 流2等待event完成 # 依赖流1结果的操作 ``` #### 5. **注意事项** 1. **时间精度**:需设置`enable_timing=True`创建事件才能计时 2. **设备一致性**:事件只能在创建它的 GPU 设备上使用 3. **同步必要性**:`.synchronize()` 是获取有效时间的必要条件 4. **事件复用**:单个事件对象**不能**重复记录,每次需创建新事件 > **重要提示**:在 CUDA 11+ 环境中使用事件时,需确保 PyTorch 版本与 CUDA 版本兼容(如引用[1]所示版本组合)[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值