文本摘要自动生成综述

当我们点开某个网站或某个新闻APP的时候,经常能看到这样的题目:“14亿人都不知道的真相,历史的血泪……”、“删前速看!XXX视频流出”等,可是当我们点进去的时候,往往会发现,都是标题党,文章和内容完全不符合!

如果这时候有一种工具能先替我们阅读新闻,再提炼出关键内容,那么我们肯定不会再受到标题党的影响,这对我们的生活无疑会有非常大的便利。而这需要的就是“文本摘要自动生成”技术!

文本摘要充斥着我们生活的方方面面,往小了说,新闻关键词的提炼是文本摘要;往宽泛看,文本摘要也可以应用在像Google、百度等搜索引擎的结果优化中,真正实现搜索中的“所见即所得”,“Smarter & Faster”,再也不会翻好几页都找不到想要的信息了。

                 (Google开源的Textsum人类/机器摘要结果对比)
复制代码

主流的文本摘要方式

目前主流的文本摘要自动生成有两种方式,一种是抽取式(extractive),另一种是生成式 (abstractive)。

抽取式顾名思义,就是按照一定的权重,从原文中寻找跟中心思想最接近的一条或几条句子。而生成式则是计算机通读原文后,在理解整篇文章意思的基础上,按自己的话生成流畅的翻译。

抽取式的摘要目前已经比较成熟,但是抽取质量及内容流畅度均差强人意。伴随着深度学习的研究,生成式摘要的质量和流畅度都有很大的提升,但目前也受到原文本长度过长、抽取内容不佳等的限制。

文本摘要的发展概况

抽取式摘要是一种比较成熟的方案,其中Text rank排序算法以其简洁、高效的特点被工业界广泛运用。大体思想是先去除文章中的一些停用词,之后对句子的相似度进行度量,计算每一句相对另一句的相似度得分,迭代传播,直到误差小于0.0001。再对上述得到的关键语句进行排序,便能得到想要的摘要。抽取式摘要主要考虑单词词频,并没有过多的语义信息,像“猪八戒”,“孙悟空”这样的词汇都会被独立对待,无法建立文本段落中的完整语义信息。

(Text rank原理如上图所示,根据句子的相似性进行排序打分。)

生成式文本摘要主要依靠深度神经网络结构实现,2014年由Google Brain团队提出的Sequence-to-Sequence序列,开启了NLP中端到端网络的火热研究。Sequence-to-Sequence又称为编、解码器(Encoder、Decoder)架构。其中Encoder、Decoder均由数层RNN/LSTM构成,Encoder负责把原文编码为一个向量C;Decoder负责从这个向量C中提取信息,获取语义,生成文本摘要。

但是由于“长距离依赖”问题的存在,RNN到最后一个时间步输入单词的时候,已经丢失了相当一部分的信息。这时候编码生成的语义向量C同样也丢失了大量信息,就导致生成的摘要不够准确。

Bahdanau等人在14年发表的论文《Neural Machine Translation by Jointly Learning to Align and Translate》中,第一次将Attention机制应用于NLP中。Attention机制是一种注意力(资源)分配机制,在某个特定时刻,总是重点关注跟它相关的内容,其他内容则进行选择性忽视。就像下图,在翻译“Knowledge”时,只会关注“知识”.这样的对齐能让文本翻译或者摘要生成更具针对性。

RNN/LSTM单元,由于每个词是按顺序输入网络的,所以会记录文章的序列信息。因此,大部分的NLP任务,都是采用的RNN架构。但是这也限制了网络训练及摘要生成的速度,因为RNN必须一个个输入,一个个生成,无法并行计算。2016年Facebook AI Research(FAIR)发表了《A Convolutional Encoder Model for Neural Machine Translation》,对Encoder部分采用似乎不擅长处理序列信息的卷积网络(CNN)来实现,结果在翻译、摘要任务中,也达到了当年的最高水准;

2017年5月,还是FAIR,发布了《Convolutional Sequence to Sequence Learning》,第一次实现了Encoder、Decoder都采用CNN单元,使得网络在训练阶段,可以并行计算,效率进一步提升。同时引入了Multi-step Attention(多跳注意),相比之前只在最后一层生成翻译时往回看,多跳注意使得Decoder阶段生成每一层的语义向量时都往回看,进一步提升了准确度。同时还有一些其他的Trick:引入单词的位置信息,残差网络,计算Attention时候对高层语义信息和低层细节信息,兼收并取等。最后在生成翻译和摘要时,速度相比之前最快的网络,提升了近9倍。同时在WMT-14英德、英法两项的单模型训练结果中,BLEU得分达到了25.16、40.46,其中英法翻译也是迄今为止的最高得分。

时隔一个月,17年6月,Google团队发布了名为《Attention Is All You Need》的文章,即不用CNN和RNN单元,只用Self-Attention和Encoder-Decoder Attention,就完全实现了端到端的翻译任务。并且在WMT-14英德、英法翻译任务中,BLEU值达到了28.4和41.0的高分。因为同样可以并行计算,模型的训练及生成速度也有所提升。Self-Attention相比于之前的模型更加关注句子的内部结构,也就是word-pairs的信息,附图是论文中Attention可视化的结果,可以发现仅在源文端,模型便学习到了“making more difficult”的word-pairs信息。

同理对目标端,模型也会单独学习句子的内部结构信息。之后利用Encoder-Decoder Attention建立源文和目标词组、句子的对应关系。相比于FAIR 的卷积模型到很高层才能看到句子的完整信息,Self-Attention在第一层便巧妙地建立了每个词和整个句子的联系,同时位置编码采用三角函数的相对位置法表示,理论上可以泛化到训练中未见过的更长长度句子的翻译中。目前Self-Attention仅用在了翻译任务中,但这样的思想,在文本摘要自动生成的任务中,也是可以参照的。

(Google Transformer模型的拆解)

总结:

从传统的Textrank抽取式,到深度学习中采用RNN、CNN单元处理,再引入Attention、Self-Attention、机器生成摘要的方式,这些跟人类思维越来越像,都建立在对整段句子的理解之上。与此同时生成摘要的效果,也常常让我们惊艳。

但文本摘要自动生成依然还有很多难题,比如如果段落太长,那么机器对段落的理解时间就要很长, 而过长的时间会导致机器对段落信息的记忆的损失。而且深度学习非常依赖有标签的样本,标注工作也是一笔非常大的开销。

总的来说,文本摘要自动生成是个非常具有前景但也非常具有挑战性的技术。

<think>好的,我现在需要回答用户关于生成式文本摘要技术综述及其IT应用的问题。首先,我需要明确用户的需求:他们想了解生成式文本摘要的技术方法以及在实际IT中的应用情况。接下来,我要回顾之前提供的引用内容,看看有哪些相关的信息可以利用。 首先,引用[2]提到自动文本摘要的挑战,包括内容理解、取舍和生成流畅文本,这说明生成式摘要需要自然语言处理技术的支持。引用[3]中提到了BERT、GPT等预训练模型在摘要任务中的应用,特别是生成式摘要中使用GPT的策略。这些模型应该是生成式方法的核心技术。引用[4]和[5]讨论了生成式AI在IT运营中的应用,比如集成私有数据、生成式工作者等,这可能关联到IT应用场景。 接下来,我需要组织生成式文本摘要的技术部分。可能需要分为核心技术、关键方法、评估指标等。核心技术应包括预训练模型、注意力机制、序列到序列框架等。关键方法可以列举基于Transformer的模型、迁移学习、强化学习优化等。评估指标方面,ROUGE、BLEU、人工评估都是常见的。 在IT应用部分,引用[4]提到集成私有数据提升个性化结果,引用[5]提到生成式工作者提高运营效率。所以应用场景可能包括企业知识管理、智能客服、数据分析报告生成等。同时,需要指出挑战,如数据安全、事实一致性,引用[3]提到对话摘要的应用尚未充分研究,可能也是一个挑战点。 需要确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$。比如在提到序列到序列模型时,可以写公式:$$P(y|x) = \prod_{t=1}^{T} P(y_t | y_{<t}, x)$$。同时,检查是否有遗漏的技术点或应用场景,确保覆盖用户的问题。 最后,生成相关问题,可能需要围绕技术对比、应用案例、挑战优化等方面提问。例如,生成式抽取式的区别,实际案例,处理长文本的方法等。 现在整理结构:1. 生成式摘要定义;2. 核心技术;3. 关键方法;4. 评估指标;5. IT应用场景;6. 挑战未来方向。确保每个部分都引用合适的文献,比如引用[3]中的模型,引用[4][5]的应用部分。同时,注意引用标识的正确位置,比如在提到预训练模型时添加[^3],在IT应用时引用[^4][^5]。 可能还需要注意术语的正确性,比如区分生成式抽取式,引用[2]中提到的内容裁剪和拼接属于抽取式,而生成式需要生成新句子。这样在技术比较时更清晰。 检查是否有遗漏的重要技术,比如指针生成网络(Pointer-Generator Networks)或者结合检索的方法,这些可能在引用中没有提到,但根据我的知识应该补充,但如果没有相关引用,可能需要避免。不过用户提供的引用[3]提到了分层文档编码器和GPT的应用,可以围绕这些展开。 最后,确保回答结构清晰,分点明确,语言简洁,符合用户要求的中文回答,并正确应用LaTeX格式。</think>### 生成式文本摘要技术综述及IT应用 #### 一、生成式文本摘要定义 生成式文本摘要通过自然语言生成技术,**理解原文语义并生成包含新词汇和句子的摘要**,抽取式摘要(直接裁剪原文片段拼接)形成对比[^2]。其核心挑战在于语义理解、内容压缩和语言生成能力[^2]。 #### 二、核心技术方法 1. **预训练语言模型** 基于Transformer的模型(如BERT、GPT)通过大规模语料预训练获得通用语言表示能力。例如: - **GPT系列**:采用自回归生成模式,适合生成连贯文本,可通过微调适配摘要任务。 - **BART/T5**:结合编码器-解码器结构,支持文本文本的生成任务。 数学表示为序列生成概率: $$P(y|x) = \prod_{t=1}^{T} P(y_t | y_{<t}, x)$$ 其中$x$为输入文本,$y$为生成摘要。 2. **注意力机制上下文建模** 通过多头注意力捕捉长距离依赖关系,解决传统RNN的梯度消失问题。例如在生成过程中动态计算输入输出的关联权重: $$\text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$ 3. **强化学习优化** 引入ROUGE等指标作为奖励函数,通过策略梯度方法提升生成摘要的覆盖率和流畅性。 #### 三、关键评估指标 1. **自动化指标** - ROUGE-N(词重叠率) - BLEU(n-gram精度) - BERTScore(语义相似度) 2. **人工评估** 包括信息完整性、可读性和事实一致性三个维度[^2]。 #### 四、IT领域应用场景 1. **企业知识管理** 集成私有数据(如内部文档、会议记录)生成摘要,提升信息检索效率[^4]。例如: ```python # 伪代码示例:基于GPT的企业文档摘要 from transformers import GPT2Summarizer summarizer = GPT2Summarizer.fine_tune_on_custom_data(corpora) summary = summarizer.generate(internal_report) ``` 2. **智能客服系统** 自动生成用户对话摘要,帮助客服人员快速定位问题[^3]。 3. **数据分析报告生成** 结合结构化数据文本描述,生成可视化分析报告的摘要章节[^5]。 #### 五、挑战未来方向 | 挑战类型 | 具体问题 | 解决方案探索 | |-----------------|----------------------------|---------------------------| | 事实一致性 | 生成内容原文矛盾 | 引入知识图谱验证机制[^4] | | 长文本处理 | 超过模型上下文窗口 | 分层编码+动态记忆网络[^3] | | 数据安全 | 私有数据泄露风险 | 联邦学习框架[^4] | [^1]: 技术比较显示生成式方法需要更强的语义理解能力 [^2]: 自动摘要要求内容裁剪语言生成的平衡 [^3]: 预训练模型显著提升生成质量 : 私有数据集成是关键应用前提 : 生成式工作者将推动自动化进程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值