如何研究某个gene的ceRNA 网络

本研究探讨了PTEN抑癌基因的表达调控机制,通过预测与其相互作用的miRNAs及受这些miRNAs调控的其他基因,构建了一个ceRNA网络,并通过体内实验验证了候选基因与PTEN之间的共表达关系。

研究人员针对 PTEN 这个关键的抑癌基因,来探究调控该基因表达的ceRNA 网络;

分析策略:

1)预测能调控该基因的miRNAs

通过miRanda 软件预测和实验验证相结合的方式,挑选出 miR-17-5p, miR-19a,miR-19b, miR-20a, miR-20b, miR-26a, miR-26b, miR-93, miR-106a, miR-106b 等miRNA

2) 预测同时受这些miRNA 调控的其他基因

通过miRanda 软件预测和实验验证相结合的方式,挑选出NCOA7, BCL11B, SERINC1, ZNF460, NUDT13,DTWD2, and VAPA 等候选基因进行后续分析;

3) 验证共表达关系

体内实验验证候选基因和目标基因之间的共表达关系

 

 

 

 从生物信息数据分析的角度看,只需要做两步分析;

以上图为例:对于目标RNA X, 预测能调控该RNA X的RNA Y,当然RNA Y不会只有一个;1)第一步以miRNA 为桥梁,找到和其共享miRNA 调控的RNA Y;2) 第二步,分析RNA X 和 RNA Y 之间的共表达关系,如果是二者存在调控关系,则表达量会存在一个相关性,而且肯定是正相关关系

 

 分析的过程有以下几个难点:

1) 不同类型的RNA 和 miRNA 调控关系的准确性, miradna 软件的结果肯定会存在一定的假阳性率;

2)  共表达分析时。阈值的筛选,文章中通过皮尔森相关性检验,计算相关系数和p值,在结果过滤时,仅仅使用了pvlaue < 0.001 ,挑选了显著相关的结果,但是可以看到,挑选的结果候选基因和目标基因的表达量的相关系数都不是很高,这个阈值在分析时如何取舍,是不是说只要p值越低越好,相关系数的大小无所谓?只要在统计学上相关性显著即可?

以上的问题都会导致预测的 ceRNA 网络存在许多的假阳性,这个是目前的分析手段不可避免的,最好的做法是结合实验手段去验证。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

参考文献:Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs.Cell. 2011 Oct 14;147(2):344-57.

 

<think>好的,用户想了解构建ceRNA网络所需的输入数据。首先,我需要回忆一下ceRNA的基本概念。根据引用[1]和[2],ceRNA是通过共享miRNA应答元件(MREs)来竞争结合miRNA,从而相互调控的RNA分子。构建这个网络需要确定哪些RNA分子(如mRNA、lncRNA、circRNA等)含有相同的MREs,并且它们的表达水平存在相关性。 接下来,输入数据应该包括各个RNA和miRNA的表达数据。用户可能来自生物信息学背景,可能需要具体的数据类型和来源。例如,mRNA、lncRNA、circRNA的表达谱数据通常来自微阵列或RNA-seq,而miRNA的表达数据同样需要。此外,还需要这些RNA的序列信息或已知的MREs信息,以确定它们是否共享相同的miRNA结合位点。 另外,根据引用[2],构建网络时可能需要进行共表达分析,因此需要样本匹配的表达数据,比如同一批患者的转录组和miRNA组数据。同时,可能还需要功能注释数据,比如GO或KEGG通路信息,用于后续分析。 用户可能还想知道具体的数据来源,比如公共数据库如TCGA、GEO,或者工具如miRBase、TargetScan。此外,数据预处理步骤,如标准化、差异表达分析,也可能是需要注意的点。 需要确认是否要详细说明每个数据类型的用途,例如miRNA-RNA相互作用预测需要序列数据,而共表达分析需要表达量数据。可能还需要提到验证实验数据,比如CLIP-seq数据,以提高预测准确性。 最后,要确保回答结构清晰,分点列出所需数据类型,并解释其用途,同时引用相关文献或数据库。可能还需要生成相关问题,比如分析方法或工具推荐,但根据用户要求,先完成输入数据的部分。</think>### ceRNA网络构建所需输入数据 构建ceRNA网络需要整合多组学数据,主要输入数据包括以下类型: #### 1. **RNA表达数据** - **mRNA、lncRNA、circRNA表达谱**:通过RNA测序(RNA-seq)或微阵列技术获取,需包含样本中不同RNA的表达量(如FPKM、TPM或count值)[^2]。 - **miRNA表达数据**:通常来自small RNA测序或miRNA芯片,需与RNA表达数据来自同一批样本以保证关联分析的可靠性。 #### 2. **miRNA-RNA相互作用数据** - **miRNA靶标预测信息**:基于序列互补性预测miRNA与RNA的结合位点(MREs),常用工具包括: - *TargetScan*(基于种子序列匹配和保守性分析) - *miRanda*(结合自由能及序列匹配评分) - *StarBase*(整合CLIP-seq实验验证的相互作用)[^2]。 - **已验证的miRNA-RNA对**:来自数据库如*miRTarBase*或文献报道的实验数据(如荧光素酶报告实验、CLIP-seq),可提高网络可靠性。 #### 3. **RNA序列与注释信息** - **RNA序列数据**:用于分析MREs的分布,例如从*GENCODE*或*UCSC Genome Browser*获取转录本序列。 - **功能注释数据**:如基因本体(GO)、KEGG通路注释,用于后续功能富集分析。 #### 4. **样本临床信息(可选)** - 若研究疾病相关ceRNA网络,需关联样本表型数据(如肿瘤分期、生存时间),用于筛选差异表达RNA或生存分析。 --- ### 数据预处理注意事项 1. **标准化**:对RNA-seq数据进行归一化(如DESeq2、edgeR)以消除技术偏差。 2. **差异表达分析**:使用工具(如limma、DESeq2)筛选疾病组与对照组的差异表达RNA/miRNA。 3. **共表达分析**:通过Pearson/Spearman相关性检验,筛选显著正相关的RNA-miRNA对。 --- ### 示例数据流程 ```text 输入数据 → miRNA靶标预测 → 共表达分析 → 网络构建(Cytoscape可视化) → 功能注释 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值