项目总结四:神经风格迁移项目(Art generation with Neural Style Transfer)

本文介绍神经风格转换技术,通过合并内容图像与样式图像生成新的艺术作品。利用预训练的VGG19网络提取特征,定义内容与风格代价函数,并通过Adam优化器进行迭代优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、项目介绍

神经风格转换 (NST) 是深部学习中最有趣的技术之一。它合并两个图像, 即 内容图像 C(content image) 和 样式图像S(style image), 以生成图像 G(generated image)。生成的图像 G 将图像 C 的 内容与图像S的 样式组合在一起。

 

2、模型

利用迁移学习的技巧,模型采用预训练的VGG19网络。预训练的模型来自 MatConvNet. http://www.vlfeat.org/matconvnet/pretrained/ 。 模型结构如下:

(1)模型结构示例图:

(2)本项目用的VGG19网络的结构

{'input': <tf.Variable 'Variable:0' shape=(1, 300, 400, 3) dtype=float32_ref>,
 'conv1_1': <tf.Tensor 'Relu:0' shape=(1, 300, 400, 64) dtype=float32>, 
 'conv1_2': <tf.Tensor 'Relu_1:0' shape=(1, 300, 400, 64) dtype=float32>,
 'avgpool1': <tf.Tensor 'AvgPool:0' shape=(1, 150, 200, 64) dtype=float32>,
 'conv2_1': <tf.Tensor 'Relu_2:0' shape=(1, 150, 200, 128) dtype=float32>, 
 'conv2_2': <tf.Tensor 'Relu_3:0' shape=(1, 150, 200, 128) dtype=float32>, 
 'avgpool2': <tf.Tensor 'AvgPool_1:0' shape=(1, 75, 100, 128) dtype=float32>, 
 'conv3_1': <tf.Tensor 'Relu_4:0' shape=(1, 75, 100, 256) dtype=float32>, 
 'conv3_2': <tf.Tensor 'Relu_5:0' shape=(1, 75, 100, 256) dtype=float32>, 
 'conv3_3': <tf.Tensor 'Relu_6:0' shape=(1, 75, 100, 256) dtype=float32>, 
 'conv3_4': <tf.Tensor 'Relu_7:0' shape=(1, 75, 100, 256) dtype=float32>,
 'avgpool3': <tf.Tensor 'AvgPool_2:0' shape=(1, 38, 50, 256) dtype=float32>,
 'conv4_1': <tf.Tensor 'Relu_8:0' shape=(1, 38, 50, 512) dtype=float32>, 
 'conv4_2': <tf.Tensor 'Relu_9:0' shape=(1, 38, 50, 512) dtype=float32>, 
 'conv4_3': <tf.Tensor 'Relu_10:0' shape=(1, 38, 50, 512) dtype=float32>, 
 'conv4_4': <tf.Tensor 'Relu_11:0' shape=(1, 38, 50, 512) dtype=float32>, 
 'avgpool4': <tf.Tensor 'AvgPool_3:0' shape=(1, 19, 25, 512) dtype=float32>, 
 'conv5_1': <tf.Tensor 'Relu_12:0' shape=(1, 19, 25, 512) dtype=float32>, 
 'conv5_2': <tf.Tensor 'Relu_13:0' shape=(1, 19, 25, 512) dtype=float32>,
 'conv5_3': <tf.Tensor 'Relu_14:0' shape=(1, 19, 25, 512) dtype=float32>,
 'conv5_4': <tf.Tensor 'Relu_15:0' shape=(1, 19, 25, 512) dtype=float32>,
 'avgpool5': <tf.Tensor 'AvgPool_4:0' shape=(1, 10, 13, 512) dtype=float32>}

  

3、成本函数

(1)内容代价函数

  • 首先把图片由3D volume展开为2D matrix,如下图:

  • 计算内容代价函数。分别以G和S两图片作为输入时,如果神经网络某一层的激活值相似,那么就意味着两个图片的内容相似。

   

(2)风格代价函数

  • 首先计算某一层的Gram矩阵:

     

  • 计算风格代价函数。分别以G和S两图片作为输入时,如果神经网络某一层的各个通道之间激活值相关系数高,那么就意味着两个图片的内容相似。

     

  • 实际上,如果你对各层都使用风格代价函数,会让结果变得更好。计算公式如下:

      

  • 把内容代价函数和风格代价函数组合到一起,就得到了代价函数:

       

 

4、模型优化算法与训练目标

# define optimizer (1 line)
optimizer = tf.train.AdamOptimizer(2.0)
 
# define train_step (1 line)
train_step = optimizer.minimize(J)

 

5、输入输出数据

  • 输入数据:content_image、style_image、generated_image
  • 输出数据:generated_image

 

6、总结

  • Neural Style Transfer is an algorithm that given a content image C and a style image S can generate an artistic image
  • It uses representations (hidden layer activations) based on a pretrained ConvNet.
  • The content cost function is computed using one hidden layer's activations.
  • The style cost function for one layer is computed using the Gram matrix of that layer's activations. The overall style cost function is obtained using several hidden layers.
  • Optimizing the total cost function results in synthesizing new images.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值