有些讲得太烂了,我来通俗的梳理一下R2.
在线性回归的模型下,我们可以计算SE(line), SE(y均值)。
The statistic R2describes the proportion of variance in the response variable explained by the predictor variable
如何理解这句话,Y本身就有自己的SE,在模型下,Y与其预测值之间又有一个SE,如果模型完全拟合,那么SE(line)=0. 此时的R2就是1,也就是所有的方差都被该模型解释了(可以想象成一种完全过拟合的模型。)
决定系数(coefficient ofdetermination),有的教材上翻译为判定系数,也称为拟合优度。
决定系数反应了y的波动有多少百分比能被x的波动所描述,即表征依变数Y的变异中有多少百分比,可由控制的自变数X来解释.
决定系数的数值恰巧等于相关系数的平方。
表达式:R2=SSR/SST=1-SSE/SST
其中:SST=SSR+SSE,SST(total sum of squares)为总平方和,SSR(regression sum of squares)为回归平方和,SSE(error sum of squares) 为残差平方和。
数据的组间变异/总变异*100%,就是所谓