64. Minimum Path Sum

本文介绍了一种使用动态规划解决二维网格中从左上角到右下角的最小路径和问题的方法。通过逐步更新网格中的每个单元格,使其包含到达该点的最小路径总和,最终返回右下角单元格的值即为所求最小路径和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

class Solution {
    public int minPathSum(int[][] grid) {
        for(int i=0;i<grid.length;i++)
            for(int j=0;j<grid[0].length;j++)
            {
                if(i>0&&j>0)
                    grid[i][j]+=Math.min(grid[i-1][j],grid[i][j-1]);
                else if(j>0)
                    grid[i][j]+=grid[i][j-1];
                else if(i>0)
                    grid[i][j]+=grid[i-1][j];
            }
        return grid[grid.length-1][grid[0].length-1];
    }
}

 

转载于:https://www.cnblogs.com/asuran/p/7594761.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值