何为仿射变换(Affine Transformation)

http://www.cnblogs.com/ghj1976/p/5199086.html

变换模型是指根据待匹配图像与背景图像之间几何畸变的情况,所选择的能最佳拟合两幅图像之间变化的几何变换模型。可采用的变换模型有如下几种:刚性变换、仿射变换、透视变换和非线形变换等,如下图:

image

参考: http://wenku.baidu.com/view/826a796027d3240c8447ef20.html

 

其中第三个的仿射变换就是我们这节要讨论的。

仿射变换(Affine Transformation) 
Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注:straightness,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,相交直线的交角不变。)。

image

c和d的区别可以看下图:

image

仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和剪切(Shear)。

image

仿射变换可以用下面公式表示:

image

参考:http://wenku.baidu.com/view/826a796027d3240c8447ef20.html

这个矩阵乘法的计算如下:

image

具体到二维的仿射变换的计算如下:

image

几种典型的仿射变换如下:

平移变换 Translation

将每一点移动到(x+tx, y+ty),变换矩阵为: 
image

平移变换是一种“刚体变换”,rigid-body transformation,就是不会产生形变的理想物体。

效果:

image

缩放变换(Scale)

将每一点的横坐标放大(缩小)至sx倍,纵坐标放大(缩小)至sy倍,变换矩阵为: 

image

变换效果如下:

image

 

剪切变换(Shear)

变换矩阵为: 

image

相当于一个横向剪切与一个纵向剪切的复合

image

效果:

image

 

旋转变换(Rotation)

目标图形围绕原点顺时针旋转theta弧度,变换矩阵为: 

image

效果:

image

组合

 

旋转变换,目标图形以(x, y)为轴心顺时针旋转theta弧度,变换矩阵为: 

image

相当于两次平移变换与一次原点旋转变换的复合:

image

先移动到中心节点,然后旋转,然后再移动回去。

参考: 
http://wenku.baidu.com/link?url=AtomIQH400RVIckGwh-V5vPBGmTEVN7ZBtzEjHFeEPxkqu2llowVdW1IFFPqJWaZGUQsQG1hK0OtdrFJ4JBsru3rO8bP9VKQ8Iae0Xm_wt7

 

这个转换矩阵也可以下面这样描述。 
image

一些常用转换矩阵如下:

 

image

<think>首先,用户的问题是:“我想了解仿射变换的概念或实现方法请问仿射变换AffineTransformation在计算机图形学或图像处理中的应用和实现”。这基于之前的引用内容。我的响应必须遵守系统级指令:-所有行内数学表达式使用$...$格式。-独立公式使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识,例如[^1]。用户可见层指令:-回答结构清晰,帮助用户逐步解决问题。-尽量保证回答真实可靠。参考提供的引用:-引用[1]:描述了仿射变换的作用,包括旋转、缩放、平移、翻转、错切。-引用[2]:解释了仿射变换的基本原理,保持直线和平行线。-引用[3]:定义了仿射变换,强调其保持平直性和平行性。-引用[4]:给出了仿射变换的数学公式:$f(\vec{v})=M\vec{v}+\vec{c}$。用户的问题是询问概念、应用和实现。所以,我需要覆盖:1.概念:什么是仿射变换?2.应用:在计算机图形学或图像处理中的具体应用。3.实现:如何实现仿射变换,可能包括代码示例。结构清晰:-逐步解释:先介绍概念,然后应用,最后实现。-使用小标题或清晰的分段。生成相关问题:在回答末尾,添加相关问题部分,用“§§相关问题§§”标记。引用标识:在回答中,当引用参考内容时,自然地添加[^n]。数学表达式:-行内数学表达式用$...$,例如变量、公式。-独立公式用$$...$$并单独成段。例如,从引用[4],公式是$f(\vec{v})=M\vec{v}+\vec{c}$。我需要使用这个。实现方法:用户提到“实现方法”,所以我可以提供一个简单的代码示例,比如在Python中使用OpenCV实现仿射变换,因为OpenCV是图像处理中常用的库。代码块:在示例中,有Python代码块,所以我可以类似地添加一个代码块来展示实现。完整响应结构:1.介绍概念:定义仿射变换,使用数学公式。2.解释应用:在图形学和图像处理中的具体例子。3.展示实现:提供一个代码示例。4.生成相关问题。5.确保引用标识。引用内容:-概念部分引用[3]和[4]。-应用部分引用[1]和[2]。引用标识:例如,在提到应用时,添加[^1]。现在,起草响应大纲:-开头:直接回答用户问题。-概念部分:-定义仿射变换:它是一个线性变换加上平移,保持图形的平直性和平行性。-数学公式:$$f(\vec{v})=M\vec{v}+\vec{c}$$,其中$M$是线性变换矩阵,$\vec{c}$是平移向量。-应用部分:-在图像处理中:用于旋转、缩放、平移、翻转、错切[^1]。-具体例子:如调整图像大小、旋转图像等。-实现部分:-在Python中使用OpenCV实现一个简单的仿射变换。-代码示例:例如,缩放图像。-相关问题:生成2-3个相关问题。相关问题示例:1.仿射变换与透视变换有什么区别?2.如何计算仿射变换矩阵?3.仿射变换在机器学习中的应用?确保中文回答。代码块:用```python...```格式。最后,添加“§§相关问题§§”部分。</think>### 仿射变换的概念、应用与实现 仿射变换Affine Transformation)是一种在计算机图形学和图像处理中广泛使用的几何变换方法。它通过线性变换和平移组合实现,保持图形的“平直性”(变换后直线仍是直线)和“平行性”(变换后平行线保持平行)[^3]。下面我将逐步解释其概念、应用和实现方法,帮助您全面理解。 #### 1. **概念与数学基础** 仿射变换的核心是一个线性变换加上一个平移向量。数学上,它可以表示为: $$f(\vec{v}) = M\vec{v} + \vec{c}$$ 其中: - $\vec{v}$ 是输入点坐标(例如二维图像中的 $(x, y)$)。 - $M$ 是一个 $2 \times 2$ 线性变换矩阵(在二维空间中),用于控制旋转、缩放、错切等操作。 - $\vec{c}$ 是一个平移向量(例如 $(t_x, t_y)$),用于移动图像位置[^4]。 这个公式确保变换后,直线和平行关系保持不变。例如,在二维图像中,仿射变换可以用齐次坐标扩展为 $3 \times 3$ 矩阵形式: $$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ 这里,$a, b, c, d$ 控制缩放、旋转和错切,$t_x, t_y$ 控制平移。这种表示简化了计算,并兼容计算机图形学中的矩阵运算[^3]。 #### 2. **在计算机图形学和图像处理中的应用** 仿射变换在图形学和图像处理中扮演关键角色,主要用于几何校正、图像增强和对象变换。以下是常见应用场景: - **旋转(Rotation)**:将图像绕一个固定点(如中心)旋转指定角度,常用于调整图像方向[^1]。 - **缩放(Scaling)**:放大或缩小图像尺寸,例如在图像压缩或分辨率调整中应用[^1]。 - **平移(Translation)**:将图像移动到新位置,用于图像拼接或对象定位[^2]。 - **翻转(Reflection)**:沿水平或垂直轴镜像图像,适用于生成对称效果[^1]。 - **错切(Shear)**:拉伸图像某一方向,产生倾斜变形,用于模拟透视或特殊视觉效果[^2]。 实际案例包括: - 在游戏开发中,通过仿射变换实现角色动画的平移和旋转。 - 在医学影像处理中,用于对齐不同视角的扫描图像[^1]。 - 在计算机视觉中,作为特征匹配的预处理步骤,确保图像几何一致性[^3]。 #### 3. **实现方法** 仿射变换的实现通常依赖数学库或图像处理库(如OpenCV)。以下是一个使用Python和OpenCV的简单示例,展示如何实现图像的缩放和平移。代码注释详细解释了每一步。 ```python import cv2 import numpy as np # 读取输入图像 image = cv2.imread('input.jpg') if image is None: raise FileNotFoundError("图像文件未找到") # 定义仿射变换参数:缩放因子为0.5(缩小一半),平移向量为(100, 50) scale_factor = 0.5 translation_vector = np.array([100, 50], dtype=np.float32) # 构建仿射变换矩阵M:缩放矩阵 + 平移向量 # M = [scale_factor, 0, tx; 0, scale_factor, ty] M = np.array([ [scale_factor, 0, translation_vector[0]], [0, scale_factor, translation_vector[1]] ], dtype=np.float32) # 应用仿射变换 transformed_image = cv2.warpAffine(image, M, (image.shape[1], image.shape[0])) # 保存和显示结果 cv2.imwrite('output.jpg', transformed_image) cv2.imshow('Original Image', image) cv2.imshow('Transformed Image', transformed_image) cv2.waitKey(0) cv2.destroyAllWindows() ``` **代码说明**: - `cv2.warpAffine` 是OpenCV中执行仿射变换的函数,参数包括输入图像、变换矩阵 $M$ 和输出尺寸。 - 矩阵 $M$ 的构造基于公式 $f(\vec{v}) = M\vec{v} + \vec{c}$,这里 $\vec{c}$ 被整合到矩阵中[^4]。 - 实际应用中,您可以通过修改 $M$ 实现旋转(添加旋转角度)或错切(调整非对角线元素)。例如,旋转矩阵可定义为: $$M_{\text{rotate}} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \end{bmatrix}$$ 其中 $\theta$ 是旋转角度。 **注意事项**: - 仿射变换适用于线性几何变换,但不能处理透视效果(需用透视变换)。 - 在性能敏感场景中,可优化矩阵运算(如使用GPU加速)[^3]。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值