无人机任务分配 matlab,Multi-UAV Task Assignment Benchmark

本文介绍了一种用于评估不同多无人机任务分配算法的测试基准。通过将团队定向问题扩展为一种多无人机任务分配问题,并采用遗传算法、蚁群优化及粒子群优化三种智能算法进行求解。实验结果构成了一套评估标准,可供同类算法效果对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multi-UAV Task Assignment Benchmark

多无人机任务分配算法测试基准

Introduction

A benchmark for multi-UAV task assignment is presented in order to evaluate different algorithms. An extended Team Orienteering Problem is modeled for a kind of multi-UAV task assignment problem. Three intelligent algorithms, i.e., Genetic Algorithm, Ant Colony Optimization and Particle Swarm Optimization are implemented to solve the problem. A series of experiments with different settings are conducted to evaluate three algorithms. The modeled problem and the evaluation results constitute a benchmark, which can be used to evaluate other algorithms used for multi-UAV task assignment problems.

265c3c96409c79736914f9de9663719e.png

8b12a8afdd55b34c61e0c0e0aa1f6f75.png

e208ce7745e3b4537b4363d5a62786b8.png

Please refer to the paper to see more detail.

Xiao, K., Lu, J., Nie, Y., Ma, L., Wang, X., Wang, G.: A Benchmark for Multi-UAV Task Assignment of an Extended Team Orienteering Problem. arXiv preprint

Usage

1. Algorithm input and output

Algorithm input includes vehicle number (scalar), speeds of vehicles ($n\times1$ array), target number (scalar $n$), targets ($(n+1)\times4$ array, the first line is depot, the first column is x position, the second column is y position, the third column is reward and the forth column is time consumption to finish the mission), time limit (scalar). The code below is the initialization of the class GA in ga.py.

def __init__(self, vehicle_num, vehicles_speed, target_num, targets, time_lim)

There should be a function called run() in the algorithm class, and the function should return task assignment plan(array, e.g. [[28, 19, 11], [25, 22, 7, 16, 17, 23], [21, 26, 12, 9, 6, 3], [5, 15, 1], [18, 20, 29]], each subset is a vehicle path) and computational time usage (scalar).

2. Evaluate

You can replace one algorithm below with another algorithm in evaluate.py, and then python evaluate.py. If you don't want to evaluate three algorithm together, you should modify the code properly( this is easy).

ga = GA(vehicle_num,env.vehicles_speed,target_num,env.targets,env.time_lim)

aco = ACO(vehicle_num,target_num,env.vehicles_speed,env.targets,env.time_lim)

pso = PSO(vehicle_num,target_num ,env.targets,env.vehicles_speed,env.time_lim)

ga_result=p.apply_async(ga.run)

aco_result=p.apply_async(aco.run)

pso_result=p.apply_async(pso.run)

p.close()

p.join()

ga_task_assignmet = ga_result.get()[0]

env.run(ga_task_assignmet,'GA',i+1,j+1)

re_ga[i].append((env.total_reward,ga_result.get()[1]))

env.reset()

aco_task_assignmet = aco_result.get()[0]

env.run(aco_task_assignmet,'ACO',i+1,j+1)

re_aco[i].append((env.total_reward,aco_result.get()[1]))

env.reset()

pso_task_assignmet = pso_result.get()[0]

env.run(pso_task_assignmet,'PSO',i+1,j+1)

re_pso[i].append((env.total_reward,pso_result.get()[1]))

3. About reinforcement learning

In Env() in evaluate.py, function step is used for reinforcement learning. Because this is still being developed, we cannot supply a demo. If your algorithm is reinforcement learning, you can try to train it with Env(). Your pull request and issue are welcome.

Mobile Edge Computing (MEC) systems that incorporate multiple Unmanned Aerial Vehicles (UAVs) have the potential to provide efficient and cost-effective solutions for a variety of applications such as surveillance, disaster management, and emergency response. In such systems, UAVs are deployed to perform tasks such as data collection, processing, and communication, which are computationally intensive and require low-latency data transmission. One of the key challenges in multi-UAV deployment is to optimize the deployment strategy to minimize the task completion time while considering the constraints of the system. These constraints include UAVs' limited flight time, communication range, and the need to prioritize tasks based on their importance. To address this challenge, we propose a novel optimization algorithm that leverages machine learning techniques to predict the task completion time for different deployment strategies. The algorithm uses a Genetic Algorithm (GA) to optimize the deployment strategy by considering the predicted task completion time, UAVs' flight time, and communication range. The proposed algorithm is evaluated through simulations in a 3D space using a realistic MEC system model. The results demonstrate that our algorithm can significantly reduce the task completion time compared to other existing deployment strategies. Moreover, our algorithm can effectively handle different constraints and priorities, making it suitable for various MEC applications. In conclusion, our proposed algorithm provides an efficient and effective solution for optimizing multi-UAV deployment in MEC systems. It can help improve the performance and scalability of MEC systems while reducing the overall cost and time required for task completion.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值