scrapy微博反爬虫_scrapy绕过反爬虫

本文介绍了使用Scrapy框架爬取微博时遇到的反爬虫策略及应对方法,包括通过代理IP解决IP限制,伪造User-Agent和Referer避免被识别为爬虫,以及利用Scrapy+Splash抓取JavaScript动态加载的内容。详细讲述了获取免费代理IP的Scrapy爬虫编写,以及设置Scrapy中间件来应用这些策略。

这里还是用scrapy框架写的爬虫。

最近才开始学习的,经过搜索了之后,常见的反爬虫方案大致有几个:

1.针对用户行为,常见的就是网站会针对ip访问频率统计,访问太过频繁,会禁止该ip地址的访问

2.判断Header,比如如果User-agent是爬虫或者检测工具,或者非正常的浏览器,就禁止该次连接

3.数据加载方式,采用ajax异步加载,这样只是爬取静态页面的话什么信息都没有办法得到

下面实现一下每一个方案的应对方案:

1.针对用户行为

针对用户行为基本上就是对ip地址的访问统计,还有同一个用户多次相同的行为什么的,不过这里是为了爬取url,基本不会有后者的情况。

可以采用代理ip来解决,写一个爬虫爬取免费的代理网站,获取到一批免费代理,然后每次都随机选一个就好了。

下面是爬取代理的代码,注意频率不要太高,免费的代理网站也是有反爬虫的。

# -*- coding: utf-8 -*-

import scrapy

import time

from scrapy.selector import Selector

class Proxyspider(scrapy.Spider):

name = 'proxy'

allowed_domains = ['www.xicidaili.com']

start_urls = ['http://www.xicidaili.com/']

def start_requests(self):

burl = "http://www.xicidaili.com/nn/"

for i in range(1,5):

yield scrapy.Request(url=burl+str(i), callback=self.parse)

def parse(self, response):

se = scrapy.Selec

### 使用 Scrapy 绕过新浪反爬虫机制的解决方案 为了成功使用 Scrapy 抓取新浪的数据并绕过反爬虫机制,可以从以下几个方面入手: #### 1. **伪装请求头** 许多网站通过检测 HTTP 请求头中的 `User-Agent` 和其他字段来识别爬虫行为。可以通过设置自定义的 User-Agent 来模仿真实用户的浏览器访问[^2]。 ```python import random USER_AGENTS = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' ] class MySpider(scrapy.Spider): name = 'sina_spider' def start_requests(self): headers = {'User-Agent': random.choice(USER_AGENTS)} yield scrapy.Request(url='http://example.com', headers=headers) ``` #### 2. **控制请求频率** 频繁的请求容易触发目标站点的防护措施。建议在 Scrapy 中配置下载延迟 (`DOWNLOAD_DELAY`) 或者启用随机延时插件。 ```python # settings.py DOWNLOAD_DELAY = 2 # 每次请求间隔至少2秒 RANDOMIZE_DOWNLOAD_DELAY = True # 启用随机化延时 CONCURRENT_REQUESTS_PER_DOMAIN = 8 # 单域名并发数限制为8 ``` #### 3. **使用代理 IP** 针对可能存在的 IP 封禁情况,可以引入动态代理池服务或本地代理列表轮询机制[^3]。 ```python from scrapy.downloadermiddlewares.httpproxy import HttpProxyMiddleware class ProxyMiddleware(HttpProxyMiddleware): def process_request(self, request, spider): proxy_list = ['http://proxy1.example.com:8080', 'http://proxy2.example.com:80'] request.meta['proxy'] = random.choice(proxy_list) # 在settings.py中激活中间件 DOWNLOADER_MIDDLEWARES = { 'myproject.middlewares.ProxyMiddleware': 100, } ``` #### 4. **处理 JavaScript 渲染页面** 如果新浪的目标页面依赖大量前端渲染技术,则需要借助 Selenium 或 Pyppeteer 等工具加载完整的 DOM 结构后再解析内容[^1]。 ```python from selenium import webdriver def get_page_source_with_selenium(url): driver = webdriver.Chrome() try: driver.get(url) return driver.page_source finally: driver.quit() # 调整Scrapy Spider逻辑调用此函数获取源码 ``` #### 5. **存储状态支持断点续传** 为了避免长时间运行过程中意外中断造成资源浪费,应设计合理的任务队列管理方案保存已完成 URL 列表以及待办事项清单[^4]。 ```python import json class PersistentSpider(scrapy.Spider): name = 'persistent_sina_spider' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.gotten_urls_file = 'gotten_urls.json' try: with open(self.gotten_urls_file, 'r') as f: self.gotten_urls = set(json.load(f)) except FileNotFoundError: self.gotten_urls = set() def closed(self, reason): with open(self.gotten_urls_file, 'w') as f: json.dump(list(self.gotten_urls), f) def parse(self, response): url = response.url if url not in self.gotten_urls: self.gotten_urls.add(url) # 解析逻辑... ``` --- ### 数据清洗与验证 最后,在数据采集完成后还需要进行必要的错漏校验环节以提升最终成果的质量水平[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值